
A%

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

AD-A272 988

!ill~ ~ ~ 2G~ A11 i11111 111

THESIS

A GRAPHICAL USER-INTERFACE
DEVELOPMENT TOOL FOR INTELLIGENT

COMPUTER-ASSISTED INSTRUCTION SYSTEMS

by

Francius Suwono

September 1993

Thesis Advisor: Neil C. Rowe

Approved for public release; distribution is unlimited

93-28387
IIIIII$i~lIIIiiIIIiIiIIIHIIIIi \•K,• 9 3 11 1 9 0 4 3

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1i. REPORT SECURITY CLASSIFICATION UNCLASSIFIED 1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT
2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release-

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

60. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Computer Science Dept. ,(if applocabl) Naval Postgraduate School
Naval Postgraduate School CSIosaua,

6c. ADDRESS (City. State. and ZIP Code) 7b. ADDRESS (City. State, and ZAP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ga. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9- PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Sc ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

A Graphical User-Interface Development Tool For Intelligent Computer-Assisted Instruction Systems

12FPERSONAL AUTHOR(S)
Irancius Muwono

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month. Day) 15. PAGE COUNT
Master's Thesis FROM0L=/ TO: Q5L2 Seitemn'er 1993 119

16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Govern sent.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

An interactive graphical interface helps intelligent computer-assisted instruction systems, because many
applications can be well represented by graphic objects. One approach is a facility whereby a teacher constructing a
tutor can associate specific graphics with specific predicate-calculus expressions describing a state in a tutoring
simulation. This further requires a specification of the arrangement of graphic objects on the screen, how graphic
objects can change position with simulation states. It also requires a language for teachers to specify graphic objects.
This thesis addresses both. We introduce a broader applications of cartoon animation modelling ideas to tutoring,
that have been limited so far by the complexity of their implementation. The special tools provided help computer-
inexperienced instructors to develop their own cartoon animation modelling tutor without the need of mathematical
description of shapes or activities to be represented. The tutor generator used employes means-ends analysis, and the
language for the teachers is built using Prowindows, a Prolog extension for object-oriented design.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
2 UNCLASSIFIED/UNLIMITED [D SAME AS RPT. [] DTIC USERS UNCLASSIFIED

I RESPONSIBLENDIVIDUAL 22b TELEPHONE (include Area Code) 22c. OfICE SYMBOL
eI. Kowe (408) 646-2462 CSKp

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited

A Graphical User-Interface Development Tool
for Intelligent Computer-Assisted Instruction Systems

by
Francius Suwono

Lieutenant Colonel, Indonesian AirForce
B. S Aeronautics, Indonesian Air Force Academy, 1969

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1993

Author: A

Francius Suwono

Approved By:.a Y.7 m

Neil C. Roiwe, Thesis Advisor

Timothy J S¢jmeall, Second Reader

Ted Lewis , Chairman,
Department of Computer Science

ABSTRACT

An interactive graphical interface helps intelligent computer-assisted instruction

systems, because many applications can be well represented by graphic objects. One

approach is a facility whereby a teacher constructing a tutor can associate specific

graphics with specific predicate-calculus expressions describing a state in a tutoring

simulation. This further requires a specification of the arrangement of graphic objects on

the screen, how graphic objects can change position with simulation states. It also requires

a language for teachers to specify graphic objects. This thesis addresses both. We

introduce a broader applications of cartoon animation modelling ideas to tutoring, that

have been limited so far by the complexity of their implementation. The special tools

provided help computer-inexperienced instructors to develop their own cartoon animation

modelling tutor without the need of mathematical description of shapes or activities to be

represented. The tutor generator used employes means-ends analysis, and the language for

the teachers is built using Prowindows, a Prolog extension for object-oriented design.

Accesion For
NTIS

CRA&I

Un~annot;~ced
Justifcation........................

By

Diut ib' tio;: I

ID t

iiia

ACKNOWLEDGEMENT

This thesis is accomplished through the help of many people. Very special thanks go

"to Dr. Neil C. Rowe for allowing me to use his domain independent intelligent tutoring

system METUTOR21 as the basis of this research. His advices during the research process

was very valuable. Dr. Timothy Shimeall, my second reader, was critical on giving me

direction with the writing process. Mr. Rian from PT. SKILL, Jakarta, helped me with

convening my cartridge backup into diskettes. Without his help I would have needed to

retype everything. Mr. Toto Tanamas from PT. Istidata Prima, Jakarta, gave me full access

to his computers and laser printers inventory, that made it possible to finish up this thesis.

Last but not least, thanks to my wife Titiek and my children Tony, Andri and Sylvi for

bearing with me through my study.

iv

TABLE OF CONTENTS

IN T R O D U C T IO N .. 1
A . B A C K G R O U N D ... I
B . O B JE C T IV E S .. 2
C . S C O P E 2
D . O R G A N IZA TIO N ... 3

II. PREVIOUS WORKS ON INTELLIGENT COMPUTER-ASSISTED INSTRUC-
T IO N SY STE M S .. 4

A. INTELLIGENT MAINTENANCE TRAINING SYSTEMS (IMTS) 4
B . Q U E ST 5
C . G U ID O N 6
D . S O P H IE 6
E . ST E A M E R 7

III. METUTOR21 TUTOR GENERATOR .. 8
A . M EA N S-EN D S TU T O R ... 8
B. KNOWLEDGE REPRESENTATION IN METUTOR21 9

1. R ecom m ended C onditions .. 9
2 . P reco n d itio n s .. 10
3. Deletepostconditions and Addpostconditions 10
4 . O ptional facts 10

C. THE USER INTERFACE OF METUTOR21 ... II

IV. IMPROVEMENT ON METUTOR21 FOR DIRECT- MANIPULATION USER IN-
T E R F A C E .. 12

A. THE OBJECT-ORIENTED APPROACH IN PROWINDOWS 12
B. ASSOCIATING NATURAL LANGUAGE WITH OBJECTS 13
C. SCREEN LAYOUT OF MEGRAPH21 .. 14
D. GRAPHICAL REPRESENTATION OF STATES 15
E. DEFINING GRAPHICAL FACT OBJECTS ... 18

1. D raw ing C reation 18
2. Grouping and Ungrouping Features ... 18
3. C opy F eature ... 19
4. Saving O bjects .. 21
5. D isplay O ption .. 21

V. DISCUSSION OF RESULTS ... 23
A . PR O G RA M SIZES .. 23
B . R U N T IM E .. 25
C . A C C U R A C Y ... 26

V

V I. C O N C L U SIO N .. 27

A. MAJOR ACHIEVEMENTS ... 27

B. WEAKNESSES AND RECOMMENDATION .. 27

vi

LIST OF TABLES

T able 1, Program sizes .. 23
Table 2, Graphic representation bitmap sizes from MEFIRE ... 24
Table 3, Runtime and memory usage statistic for MEGRAPH21 using MEFIRE 25
Table 4, Maximum, minimum and average of memory usage 26

vii

LIST OF FIGURES

Figure 1, MEGRAPH21 session window showing location is repair locker 16
Figure 2, Session window showing change of state from Figure 1. Location is fire. 17
Figure 3, A circle primitive object on its figure (a) and direct display (b) 19
Figure 4, Grouped primitives make one object ... 20
Figure 5, A copied object .. 20
Figure 6, The newly created object (bowl) will be saved, the cat will not 22
Figure 7, DRAWGRAPH main-plate and the menu .. 30
Figure 8, DRAW GRA PH m enu ... 31
Figure 9, Sub-m enu for drawing lines ... 33

-Figure 10, Sub-menu for drawing paths .. 34
Figure 11, Sub-menu for drawing boxes .. 34
Figure 12, Sub-menu for writing text for text boxes ... 35
Figure 13, Sub-m enu for saving objects .. 36
Figure 14, Sub-menu for selecting a filename ... 37

viii

I. INTRODUCTION

A. BACKGROUND

Computer-aided instruction (CAI) refers to use of computer to tutor humans [TURB

90]. To a certain extent, such a machine can be viewed as an expert system. However, the

major objective of an expert system is to render advice, whereas the purpose of CAI is to

teach. Computer-aided instruction has been in use for many years, bringing into the

educational process the power of the computer. Now artificial intelligence (AI) methods are

being applied to the development of intelligent computer-assisted instruction (ICAI)

systems in an attempt to create computerized tutors that shape their teaching techniques to

fit the learning patterns of individual students.

An intelligent computer-assisted instruction system basically consists of four major

parts: the student modelling module, the expert module, the tutorial module, and an

interactive user interface. The expert module is a domain-specific knowledge base where

the teacher's expertise and knowledge are stored. The tutorial module, sometimes referred

to as the inference engine or tutor generator, is a program which, given a certain response

from a student, uses the information in the knowledge base to generate the tutor. The

interactive user interface provides communication between the system and the user.

In most ICAI almost all effort is put into building the first three modules, the student

modelling module, the expert module and the tutorial module, since they do form the core

of the ICAI, and little research effort goes into developing good user interfaces. Yet there

are two good reasons not to ignore interfaces issues. First, the best educational software can

be ruined by a bad interface, and second, students will not learn to their potential from a

program they are reluctant to use [PSOT 88]. Early design of intelligent computer-assisted

instruction systems very much depended on natural-language front ends, with human-like

dialog. But human-like dialogue, in which the computer prompts the user for answers to a

series of questions, is rigid, tedious and machine-centered [HEND 88]. A better approach

could be to provide intelligent computer-assisted instruction systems with a graphical user

I

interface, where facts are represented by a set of visual representations (graphical objects)

on a graphical display that can be manipulated by the users The users have no command

language to remember beyond the standard set of manipulations and a continuous

remainder on the display of the available objects and their states This direct manipulation

approach is good for all intelligent tutors that continuously need to assert and retract part

of the knowledge base.

B. OBJECTIVES

This thesis addresses the user interface problem by augmenting a domain-independent

computer-assisted instruction system with a graphical user interface and then providing the

teachers with a tool for defining their instructional modules to work with the augmented

system. We used as basis Professor Neil C. Rowe's domain-independent tutor generator for

sequential skills, METUTOR21 [ROWE 90], which uses means-ends analysis approach.

We want to keep the original e'nvironment of METUTOR21 by using the same

programming language (PROLOG) and /or its extension.The final outcome of this

research consists of two parts: the augmented inference engine MEGRAPH21 and a

graphics production tool for the teachers to define their facts in graphics representations,

DRAWGRAPH.

C. SCOPE

In augmenting METUTOR21 we followed it closely and preserved its original

organization. Some parts, however, need to be completely rewritten to reflect the need of

object-oriented design. This graphical user interface improvements are written in

PROWINDOWS, an extension of the PROLOG programming language. A graphics

design tool for the teachers comprises the other half of the effort in this thesis. It provides

a way to define graphical objects, to specify their position on the interface screen, and to

define the interaction between graphical objects and the tutored states.

2

D. ORGANIZATION

Chapter II of this thesis describes previous works on ICAI, some of them with

graphical user-interface. Chapter III describes in a considerable detail the MEETUTOR21

as a domain-independent tutor generator. Chapter IV provides the description of our

programming to provide the tutor generator with graphical user interface. Chapter V

discusses the results and summarizes the performance of this thesis research using fire-

fighting tutor MEFIRE [ROWE 90] as the teacher module Chapter VI closes the thesis

with an overview of the work accomplished and areas for future research.

3

II. PREVIOUS WORKS ON INTELLIGENT COMPUTER-ASSISTED
INSTRUCTION SYSTEMS

Many intelligent computer-assisted instructions had gained pupularity and shown

impressive teaching performance. Programs such as IMTS [PSOT 88], OASIS [HEND 88],

and SOHPIE [SLEE 82] are considered as successful ICAI programs, but all of them are

highly specialized or domain-specific, so specific that has made it difficult to extend them

to related domains. MIETUTOR21 that employs means-ends analysis is capable of

surprisingly powerful reasoning, yet is easy to customize for an application. It has been

successfully applied to a wide range of training tasks, some of them have been for fire-

fighting tutor on naval ships [WEIN 88], cardiopulmonary resuscitation [CATP 88],

network-mail program [KIM 88], replenishment of ships at sea [SALG 89], and pilot

emergency tutoring system [KANG 90]. However, no one has tried tieing graphical user

interface to METUTOR21. The followings are description of examples of related tutoring

programs, some of them have graphical user interfaces.

A. INTELLIGENT MAINTENANCE TRAINING SYSTEMS (IMTS)

The Intelligent Maintenance Training System (IMTS), was developed by Behavioral

Technology Laboratories, University of Southern California, in early 1985 [PSOT 88]. The

major objectives of the IMTS are to construct a cohesive maintenance training system in a

functioning systems, and to produce an operational maintenance training system that can

be used by instructors to meet a wide range of training needs. The first application of the

IMTS will be in training corrective maintenance of the SH-3H helicopter's bladefolding

subsystem. The system was envisioned from the start to operate on off-the-shelf processing

and display hardware manufactured in quantity and maintained commercially, and mouse

is used for computer-student interactions that rely heavily on simulation of the real system.

The system includes an object construction editor to define the graphic appearance and

functions of generic objects, a system construction editor to build a specific system from

the generic objects, and a simulator to determine the symptom of the faulty part. After a

4

new object is defined graphically it is given rules for its behavior using a generic-object

behavior editor.

The IMTS screen is divided into four major sections for display. The fixed view of the

system organization provides the student with a means of selecting close-up views of

system subsections. The text area presents verbal messages from the IMTS in response to

student actions, or as part of a guided simulation. The main simulation display area shows

a detailed diagram of one portion of the system. The convenience viewing area displays

copies of some of the system elements that appear in the detailed diagram. Each practice

problem consists of a malfunction, inserting the malfunction into the simulation data of tht

system, initializing the control settings, and displaying the operator's complaint in the text

area. The student uses the mouse to directly manipulate simulated objects and to select

menu commands and other options. Actions are performed by selecting the portions of the

system diagrams containing controls, indicators and test points of interest, and

manipulating the displayed elements as if they were the real equipment.

IMTS can be configured for new training applications, but it consists almost entirely

describing the new architecture to the system.

B. QUEST

QUEST (Qualitative Understanding of Electrical Systems Troubleshooting) is an

ICAI system for teaching electrical system troubleshooting. The system employs

qualitative simulation models to produce explanations and to generate animated displays

about the behavior of simple electrical circuits. The simulation includes a description of the

circuit with rules for evaluating states of devices. It supports a dynamic presentation

environment using graphics. Troubleshooting concepts and strategy within the

environment of circuit operation can be demonstrated by the expert troubleshooting

program. QUEST diagnostic feature elicits explicit information from the student about the

intended purpose of his or her actions before they are performed and about his or her

5

conclusions afterward. The interface is relatively easy: the student answers questions by

choosing from a range of responses from the display window using the mouse.

C. GUIDON

GUIDON [CLANC 87] is a structured, case-method-dialog teaching program. The

program generates teaching material from rules, constructs and verifies a model of what the

student knows, and explains expert reasoning. The objective of GUIDON is to convert

MYCIN, an infectious-disease knowledge-based consultation program into an instructional

.tool As an interactive teaching program, GUIDON systematically compares student

behavior to what MYCIN would do, alerting the student to discrepancy in a consultation.

The explanation program in GUIDON abstracts key reasoning steps and presenting prosaic

summaries and subgoal diagrams. GUIDON has been coupled to other knowledge-bases

like the PUFF consultation system for diagnosis of pulmonary function and the SACON

system for structural analysis. The purpose of a GUIDON tutorial is to use the context of

an actual problem to make the student aware of inconsistencies in his knowledge, and to

correct these inconsistencies. The student-computer communication is limited to a

computer terminal that print one line at a time, graphical representations are not considered.

D. SOPHIE

The Sophisticated Instructional Environment (SOPHIE) [SLEE 82] is a pioneering

ICAI system for electronics troubleshooting training. It used a general circuit simulation

program as a dynamic knowledge base for evaluating the behavior of the circuit under

working or faulted conditions. The student goal is to find a fault in the simulated system.

SOPHIE uses device-base simulation to support the checking of student inference, as well

as heuristic strategies for question generation and answering mechanism. The

understanding capabilities in the system was based on its use of a general purpose circuit

simulation called SPICE, together with a LISP-based functional simulator. SHOPIE used

the simulator to make powerful inferences about circuit behavior. It could infer what the

6

student should have been able to conclude, however it could not tell whether the student's

conclusions were based on logically complete and consistent reasoning.

E. STEAMER

STEAMER [KEAR 87] is an intelligent computer-assisted instruction system that

simulates a ship's steam propulsion plant. It is used to train operators by helping them

understand the complex system through interactive graphical interfaces. The actual

implementation of reasoning mechanism is purely mathematical, and it has inspired

research in the areas of mental model and abstraction simulation in Al.

7

III. METUTOR21 TUTOR GENERATOR

METUTOR21 is a domain-independent inference engine used for teaching sequential

skill [ROWE 90]. This reasoning mechanism implements means-ends analysis method that

is similar to the way people solve many sequence planning problems. Unlike other tutor

programs that teach sequential actions, METUTOR21 is easy to customize for an

application. It requires only assertion of preconditions, postconditions and a set of

recommended conditions for actions. The simple method can easily be understood by

people not expert in artificial intelligent, making it easy to construct a tutor program.

A. MEANS-ENDS TUTOR

Means-ends analysis is a classic technique for solving search problems by abstraction.

The top-level of means-ends analysis in METUTOR21 is a recursive means-ends

predicate with four arguments: State, Goal, Oplist, and Goalstate. The State is a complete

list of true statements (facts) in a state, the Goal is a list of facts that are required in the goal

state, the Oplist is a list of operators required to reach the goal state from the starting sate,

the Goalstate is a complete list of facts at the goal state.

The means-ends tutoring strategy checks if the student action agrees with what the

tutor think is the best action. If it doesn't the student is tutored and shown the implications

of his or her action. Six domain-independent bug types can be detected with student-

selected actions [ROWE 88]:

1. The student's action is a misspelling of a known action.

2. The student's action is easily confusable with a recommended action.

3. The student's action does not satisfy preconditions of the action.

4. The student's action is an irreversible one: that means the problem can never be

solved if the action is performed.

5. The student's action is useless.

6. Both the student's action and the computer-selected action are possible in some

state

8

To know what operators to apply for a specific situation, means-ends analysis needs

to know the difference between the current state and the goal state. This difference usually

is stored in a difference table. Using the recommended operators the difference table

recommends an operator appropriate to a state and a goal. It is important to note that the

difference table only recommends, with no concern if the operator can actually be applied

to the state. The recommendation can be overruled by the stronger precondition

requirements. Through the difference table a problem is decomposed into three simpler

subproblems: a subproblem of getting from the current state to an intermediate state in

which the student can apply the recommended operator, a subproblem of applying the

operator and get to a new state, and a subproblem of going from there to the goal state.

The last two steps are search problems themselves, possibly requiring additional

decompositions of their own. Means-ends analysis is also hierarchical reasoning because it

starts with big problems and tries to gradually reason down to little details [ROWE 88]. As

shown in the decomposition process above a complete and correct specification in the

difference table of preconditions and postconditions of operators is essential for means-

ends analysis.

B. KNOWLEDGE REPRESENTATION IN METUTOR21

METUTOR21 is written in PROLOG [QUIN 90] using predicate calculus

expressions as the format for its knowledge representation. The teacher defines the

recommended conditions, preconditions, deletepostconditions and addpostconditions rules

and optional facts in the knowledge base as the description of the domain.

1. Recommended Cordi.nis

Recommended conditions are collection of facts about what action is

recommended to get to a certain condition. Predicate recommended with two arguments:

recommended(Operator, Difference-list)

9

shows what operator to apply to get a listed difference between goal state and current state

Recommendations are weaker than preconditions because they don't take into account

other conflicting conditions. A recommended condition may not be applicable if the

precondition does not support it.

2. Preconditions

The precondition predicate gives the prerequisites for applying an operator. This

is a stronger condition for applying an operator than the recommendation. The

recommendation only recommends, with no consideration whether the operator can be

applied or not, whereas precondition requires that the prerequisites are met before an

operator can be applied.

3. Deletepostconditions and Addpostconditions

The deletepostcondition predicate lists conditions deleted when an operator is

applied. These conditions are no longer true after the operator is applied and need to be

removed from the state. The addpostcondition predicate lists conditions added into the

difference list (list containing the difference between the current state and the goal state)

when an operator is applied. These conditions become true after the application of the

operator, and are added to the state.

4. Optional facts

The following facts are optional and can be added in the teacher's definition of

the knowledge base. The randsubst predicate gives random-substitution triples or

quadruples, each with the arguments: initial-fact, ending-fact, transition-probability, and

message to user. It gives additional changes beyond those specified in the postconditions

to simulate a real-world situation and to challenge the student. The noprefs predicate shows

that the order of priority of two operators in the 'recommended' rules is arbitrary. The intro

predicate gives introductory information for the student. Debugflag, if asserted, prints

10

additional debugging data. studentflag, if asserted, prevents the program from checking

for teacher errors, so the execution is speeded up.

C. THE USER INTERFACE OF METUTOR21

METUTOR21 uses natural language as the medium of communication between the

system and the user. The built-in natural language processor inside MLETUTOR21 "works

most of the time", as Professor Rowe termed it, however it is limited. The natural language

processor translates typed-in input from the user into a predicate expression that can be

used by the tutoring system for the reasoning process, and translates the resulting predicate

expressions into natural language to be displayed to the user.

No special window is designed for interactive communication between the student and

the tutoring system. METUTOR21 runs in any PROLOG window. Help is provided

showing the list of possible operators in randomized order. Some filtering on the student

typed-in input such as spelling correction and checking of student confusion is provided.

As mentioned in the introduction, natural language front ends like this in which the

computer prompts the user for answers, is rigid and machine centered. At best, it is error-

prone and it distracts the students from the learning contents, thus reduces its effectiveness.

Improving METUTOR21 with direct manipulation user interface would overcome this

problem.

IV. IMPROVEMENT ON METUTOR21 FOR DIRECT-
MANIPULATION USER INTERFACE

Direct-manipulation user interfaces need to represent menus and selections as objects.

This is possible for programs written in PROLOG with PROWINDOWS [QUIN 88], an

object-oriented extension of PROLOG. Quintus PROWINDOWS is an object-oriented

programming package that enables PROLOG programmers to create window-based user

interfaces for their application programs.

A. THE OBJECT-ORIENTED APPROACH IN PROWINDOWS

PROWINDOWS uses objects and messages between objects to create window-based

user interfaces. These high-level messages are passed between PROWINDOWS and

PROLOG, with PROWINDOWS handling the low-level tasks required by the program

[QUIN 88]. The tasks that PROWINDOWS objects can perform are called the object's

behaviors.

The objects in PROWINDOWS are grouped into classes, with bottom-level objects

called instances of a class. Kernels are classes that describe objects, messages, and other

classes. Data Types are classes that describe abstract data types, including points,

dimensions, collections of objects, and lists. Windows are classes that provides access to

most of the facilities of the window system such as creation, display and destruction of

widow families. Dialogs are classes that allow the user to directly communicate with an

application program by using various kind of menus, buttons, and the keyboard. Texts are

classes that provide simple text manipulation tools for loading, editing, and saving text.

Graphics are classes that describe both primitive graphic objects (bitmaps, boxes, circles,

ellipses, lines, paths, text and text-block) and compounds of primitive graphic objects. All

primitive graphic objects can be displayed inside a window class, especially subclass

picture. The basic entity which can be displayed in a picture is called a graphical. Messages

to these graphicals can be sent through programs or direct interactive using a mouse or

typed-in input through a dialog window.

12

B. ASSOCIATING NATURAL LANGUAGE WITH OBJECTS

Typed-in text inputs are no longer used in MEGRAPH21, our augmentation of

METUTOR21. Instead, users use the mouse to select the operators they want to apply from

a list displayed in a browser window. This approach requires that operators be converted

into text objects that can be displayed in random order. Our first step to do this is to create

a browser window, where the operator objects are displayed. A browser window is a special

window object for displaying a list of selection objects. Objects inside a browser window

are arranged vertically, and can be selected by clicking the mouse left button.

Our next step is to find all possible operators. On initialization we extracted the

operators from the second arguments in the recommended rules, and convert every one of

them into a string object. The browser window shows the list of operators, and the operators

are now objects with their own behaviors. This window is a scrolling window, which means

that the amount of visible space does not limit the number of operators displayed. This kind

of menu is favored for displaying operators that vary in number from one tutorial program

to another.

The natural language to text object conversion is handled by the predicate:

showlist(Text, L, R)

with Text being the text object, L the predicate expression list, and R the type of the ex-

pression (in this case operator type). We also prepare a translation table in the form:

translate(predicate form, natural language form)

to avoid operator processing every time a translation is needed.

The conversion from fact predicates and preconditions into text objects is handled in

a similar way. The predicate expressions are converted into natural-language-like string

objects and then sent to a text-block object.The text-block object is in turn sent to the

13

display window. This is because the text-block object can arrange the text in an intelligent

way. It can align the text according to the teacher's specification, by left, right or center

alignment. The natural-language format for the output objects follows the original format

in METUTOR21.

There is a conversion from fact predicates to filenames for most fact predicates, which

is basically the same operation as the conversion operation above. The difference is that

instead of blank space between words we put underline in the filename conversion This

conversion is used for saving and calling a bitmap file.

C. SCREEN LAYOUT OF MEGRAPH21

The MEGRAPH21 interface screen is of size 930 by 850 pixels (see Figure 1), taking

almost the whole screen in a Solbourne S4000 workstation. This is done to eliminate

distractions due to a crowded screen display. There are two main parts of the window, the

large display window itself on the left, and the operator selection browser on the right.

The topmost of the main display window gives the problem context. It introduces the

tutor to the student as to give a general idea of what is happening. Teachers are encouraged

to provide this intro in their tutorial definition, and otherwise the 200 characters space

provided is not used. Next is the objective definition. This objective is the final goal the

student should achieve. This can be considered as the definition of success, and explicitly

stated by the teacher in the predicate goal. Four lines (approximately 400 characters) are

provided for this. If the space is exceeded some of the characters will not be displayed.

Below this is the current state definition, the condition at this point in the simulation. At the

onset of the tutoring, this state uses the teacher definition of start-state and it is changed

dynamically during the session. The same amount of space as the objective is provided for

this display.

A big box under the current state display is the graphical presentation of the state

described just above. This seems like a redundancy, but it has a point. The two different

formats, textual and graphical, each have advantages and disadvantages. Textual

14

representation can convey a meaning difficult to describe graphically like the state of an

object, but graphical representations make the problem states look more real.

Under the graphical representation box is the student selection box. It shows the last

operator selected by the student in a small box. Below this box is the tutor display,

displaying whatever the tutor says or comments. This comments are made by the inference

engine as the tutoring progresses.

Except the top two parts, everything in the main display window is changed with

changes to the tutoring state

D. GRAPHICAL REPRESENTATION OF STATES

Representing states graphically requires that every fact object has a corresponding

graphic representation. Better yet, the mapping should be from sets of facts to a graphic

object, considering that one fact can have several states, for example a team can be at the

repair locker or at the fire and can either be equipped or unequipped

The teacher is responsible for defining the contextual combinations of facts for

graphical representation. For example the fact fire is raging must be represented

differently according to the location of the fire team. The tutor generator will check the state

for a contextual combination, and then display the associated representation if any,

otherwise the default representation will be displayed.

The default representation is stored with the same filename as the fact. The contextual

combinations are defined by the predicate display with three arguments. The first argument

is the fact to be represented, the second argument is the list of additional facts providing

context, and the third argument is the filename of a graphical representation of the fact. The

following examples show how contextual combinations are defined:

display(raging(fire), [location(repair, locker)], firel)

display(raging(fire), [location(fire)], fire2)

display(smokey, [location(repair, locker)], smokeyl)

display(smokey, [location(repair, locker)], smokey I)

15

di splay(smokey, [location(fire)], smokey2)

display(location(repair, locker), [], team 1)

display(location(fire), [], team2)

display(approach(fire), [], team3)

di spi ay(equipped(team), [locati on(repair, locker)], equipment 1)

di splay(equipped(team), [location(fire)], equipment.2)

di splay(equipped(team), [approach(fire)], equipment3)

These definitions must be included in the teacher's module. Figure 1 and Figure 2

show the implementation oi this approach in our session window with the above contextual

definitions inserted in MEFIRE.

"lest heod..

Vtooutiitoho *I" first aid
teset It's~

fife is Outh VII f*d tesItsa e a re %, aft, OWe.. #$ot t . tea.., 4Ateoigliped. It 141107 Allkey. It Isticit waterv.
.gflashoW wlOt watched, casualty a Aol DeeeeritL casualty isnot ul",t~acr4d casulty Isnt te19 ead team is

de 'em".

testlqlI
d£,a~t so,101.? c.0w

ýAI
111110~,1M Che~ Mlade. t?"t l o Ie.a COWoan' It Validityam"

Figure 1: MEGRAPH21 session window showing location is repair locker.

16

set bow"'t
Vovw Us, fet twam i6.dy on a U 5 Navv ihw A ftir hot be reet SKur I*f I as. W

test W"" tilt *
astt11". M401

V" , I' l *I,,etTosir f14ter

e
go '..i, leckom

V•t, I. Gt 6s vrofs4'. fla"s 0,0 lofe. oey~ ih loft. teom is not jiVq4It Is not trwisfy, It i$ not wlatery. 4d1ort
toftas/ing is not wtlf"O. CaS lty i h not prrr. ?. CjtcaT IS nOt WsP,:@A ,C C4asiatIt ht OeT 4"A It Is N4dI•t rietgfd. tilt l t

4@660fdtilt "0 t,9
11rerl It IOA ,, onI, ff• |A Cn Or~tdH I5 % ew ewt, •I"m is *0,4ý0 11 re t " i m r uIt1 Is vmIL o uI t

tmm so,"h"*(t ovolep4col Co•w'e w '"' t

INI

Figure 2: Session window showing change of state from Figure 1. Location is fire.

The graphics display area is refreshed every time the state changes to display the new

state. To prevent refreshing the whole window, the graphic display area is isolated from the

rest of the window area. This is done by using a bitmap object as the displaying area. This

bitmap object is of size equal to the graphics display box. It is appended to the main

window. Whenever the state changes, MtEGRAPH21 changes the bitmap instead of

refreshing the whole display window. Each drawing displayed on the graphic display box,

and associated with a set of facts, is loaded from bitmap files created by the teacher using

DRAWGRAPH, a graphics tool.

17

E. DEFINING GRAPHICAL FACT OBJECTS

Since MEGRAPH21 can only call graphic objects that previously stored in

PROWINDOWS format, we cannot just have the teacher uses any graphics tool like

FrameMaker to create the pictures needed. Also, many graphics tools are too complex for

computer-naive teachers to use. So we created DRAWGRAPH the graphics tool for

defining graphical objects that goes with MEGRAPH21. Using DRAWGRAPH the

teacher can create new drawings, group several drawings into one object, ungroup an object

into individual graphic objects, make copies of a graphic object, save and display

"previously saved drawings.

1. Drawing Creation

Our graphics editor DRAWGRAPH uses primitive graphic objects such as lines,

paths, boxes, circles and ellipses as building blocks to create an object. The graphic

primitives permit the creation of many graphic images. An additional class calledfigure is

provided in PROWINDOWS to enable the user to interact with graphic objects. Figures

are objects having three special capabilities:

I. They can represent a collection of graphicals, within a fixed reference frame

2. They can be moved either with a mouse or under program control.

3. They can be linked to one another to represent a logical relationship.

All graphic objects created with DRAWGRAPH are appended to a figure the first

time they are created, so they can be manipulated by the teacher (see Figure 3). However,

we chose to save it in a bitmap, because it is the simplest way of saving. The problems with

saving in a bitmap are the required large amount of space and that we can not manipulate

the individual objects anymore, since a bitmap is a collection of pixels.

2. Grouping and Ungrouping Features

To represent complicated objects, DRAWGRAPH is equipped with a grouping

capability. Several graphical primitives can be grouped into one object to make it easy for

further manipulation like copy, move etc.

18

a b

Figure 3: A circle primitive object on its figure (a) and direct display (b).

The objects selected for grouping are separated from their initial figures, and then

the graphical primitives are all appended to a new figure (see Figure 4). A position

correction is needed in this process because the graphical primitives still hold an initial

position which does not conform to the group figure position. Ungrouping is a less

complicated procedure. The selected object is first separated from the figure to which they

were appended, and each individual graphical object is appended to its own new figure.

3. Copy Feature

DRAWGRAPH's copy feature makes a duplicate of an object, whether they are

primitives or grouped objects. A duplicate object is initially displayed at five pixels down

and five pixels right of the original object.

19

Figure 4: Grouped primitives make one object.

ý5,.

Figure 5: A copied object.

20

4. Saving Objects

Saving an object is the last step in defining a graphical object. The save option

from the main menu will display a submenu with four buttonsý Clip, Cut&Save, Done and

Cancel. To save an object the teacher must define first the area to be saved using the Clip

option. The Clip option allows the teacher to draw a box surrounding the area to be saved.

It is important to draw the box as close as possible to the object to cover the

smallest area possible, so the bitmap file where it will be saved is minimum. After an area

is defined, we use the Cut&Save button to save the clipped area. Cut&Save option will give

us the list of possible filenames that we can use. Selecting one of the filenames and clicking

the OK button will save the clipped area to a file of that name. Filenames other than the

ones offered by the listing can also be defined by typing in the text area. Since a bitmap

does not retain any information about position, the graphic object position is saved in a text

file called posfile. This file is created and maintained (add or delete) by DRAWGRAPH

and contains facts in the following format:

area(filename, X, Y, Width, Height).

This file is loaded by MEGRAPH21 to position the graphic objects in the display

area, and used by DRAWGRAPH in the display option.

5. Display Option

The display option will display previously defined graphic objects in the drawing

area. It can be used to position the next drawing relative to the previous drawing. While the

displayed objects occupy the same space with the newly created object, they are appended

to different window-class object. The displayed object is appended to a bitmap object,

while the new object is appended to a picture object. The save option ignores the bitmap

object in the clip area (see Figure 6). Using this approach the exact position of graphic

21

objects can be defined The drawing area is of the same size as the MEGRAPH21

graphically area, hence position in drawing is important It will be the same as on the tutor.

displayed object

newly created ...

clipped area

Figure 6: The newly created object (bowl) will be saved, the cat will not.

22

V. DISCUSSION OF RESULTS

We tested the tutoring system first without any graphical display, and then with

graphical representation completely defined For this testing we used MEFIRE [ROWE

90], the fire fighting tutor, as the tutorial module.

A. PROGRAM SIZES

Source
Files Description Code Size

in bytes

MEGRAPH21 Tutorial module 37,322

DRAWGRAPH Graphic editor module 30,732

COMMON Common module, used by 15,068
both MEGRAPH and
DRAWGRAPH

MEFIRE The fire-fighting tutor 8,515
module

POSFILE File for storing graphics' 1,071
position

Total 92,708

TABLE 1: Program sizes.

The sizes of the programs are shown in Table 1. The total size is approximately 93

kilobytes including the tutorial module which varies, depending on the teacher's

application. Besides the program files there are bitmap files that store the graphical

representation of facts defined by the teacher. As shown in Table 2, some of the sizes are

big due to the bitmap files. That is why it is important to clip the file as close as possible to

the graphical objects to reduce the storage size. The sizes will vary from one application to

the other, and depend on how complicated the representations are.

23

Size in
Bitmap Filename Operator applied bytes

boundaries are-set set boundaries 19,080

casualty.is.present random substitution, 9,345

casualtyis.treated give first aid 5,364

fire.area.is deenergize denergize 5,324

fire is.confronted go fire 25,957

fire.is out is verified verify out 8,007

firesraging starting state 16,756

gases.are safe none 11,106

gasesaretested test gases 13,518

it-is.smokey starting state 35,464

it-is.watery starting state 11,157

medical corpman is_.present random substitution 6,441

oxygenJis-safe none 14,475

oxygen is-tested test oxygen 13,656

oxygen tester-is tested test oxygen tester 10,897

reflashingis.watch set reflash watch 15,628

repairlockerjis location go repair locker 58,639

team is.debriefed debrief 18,229

teamjisequipped equip 14,287

team is not-equipped store equipment 13,399

water is.estimated estimate water 3,126

Total 332,855

TABLE 2: Graphic representation bitmap sizes from MEFIRE.

24

Mem Total Program Global Local Stack Runtime in
Trial In Use Space Stack

(bytes) (bytes) (bytes) (bytes) seconds

1 1306144 454228 719836 624 62.583

2 1276672 490288 612060 624 94.316

3 1206704 420320 645660 624 51.816

4 1165908 445056 583432 664 73.733

5 1167558 446596 551792 624 96.033

6 1249036 462652 639940 624 125.116

7 1255152 468768 673720 624 149.833

8 1198448 477596 591476 624 177.566

9 1202504 481652 610204 624 204.916

10 1208356 487504 580036 664 228.583

11 516048 384984 31492 416 41.033

12 1191876 405492 623248 624 62.833

Avg. 1064875 452095 571908 613 114.030

TABLE 3: Runtime and memory usage statistic for MEGRAPH21 using MEFIRE.

B. RUNTIME

The runtime of MEGRAPH21 using MEFIRE as the tutorial module is des(,,ibed in

the following statistics. The runtime and the memory usage vary according to the tutoring.

More mistakes made by the student means more runtime and more memory usage, and no

mistakes takes the minimum runtime and memory usage. Time also depends on whether

random substitutions are in effect. We ran the program 12 times, the minimum runtime

(CPU time) was approximately 41 seconds and the maximum was 229 seconds, with the

25

average runtime of 114 seconds (see Table 3). The maximum, minimum and average of

memory in use, program space, global stack and local stack are shown in Table 4.

Memory Maximum Minimum Average(bytes) (bytes) (bytes)

Total memory in use 1.306.144 516.048 1.064.875

Program space 490.288 384.984 452.095

Global stack 719.836 31.492 571.908

Local stack 664 416 613

TABLE 4: Maximum, minimum and average of memory usage.

C. ACCURACY

We were concerned with the accuracy of the graphical representation displayed on the

screen and the list of facts displayed in the state text. Throughout the testing we found that

the list of facts was represented as intended accurately. The position of graphical objects on

the display screen was the same as when they were created. Even when the student made

mistakes, the change of state was exactly represented by the graphical representation. We

simulated several mistakes during the testing, and no deadlock was detected.

26

VI. CONCLUSION

A. MAJOR ACHIEVEMENTS

This thesis is the first attempt to provide a graphical user-interface to METUTOR21.

Two major achievements were accomplished: First, we provided the domain-independent

tutoring system with a direct manipulation interactive user interface; second, we provided

the teachers with a tool to define their facts in a graphical representation.

In those respects, MEGRAPH21 is innovative in the following ways:

a. It introduces a broader applications of cartoon animation modelling ideas to

tutoring, that have been limited so far by the complexity of their implementation.

b. The special tool provided helps computer-inexperienced instructors to develop their

own cartoon animation modelling tutor without the need of mathematical description of

shapes or activities to be represented. Image can be created and location is specified, and

association with particular facts or set of facts can be defined. The correspondence of facts

to images can be specified not only as a single fact to a single image, but also multiple facts

to a single image or multiple facts to multiple images.

B. WEAKNESSES AND RECOMMENDATION

The facts, objectives and teacher-comments display of 400 characters in

MEGRAPH21 may not enough for bigger programs, and scrolling will be necessary.

'Greying' the previously selected operators will help the students see the rest of the

operators that is not applied yet For better animation more than just contextual relation

definition of facts is needed. We need more graphical definitions and integration

management in the tutor module.

Screen refreshing should not be necessary every time there is a change in state.

Instead, an individual graphical representation should be asserted or retracted from the

display screen. Every graphical object should be editable. This requires that the drawings

be stored as graphical objects as well as bitmaps. The ability to read bitmap files stored in

format other than PROWINDOWS format would be an advantage.

27

Other drawing features can be added. Free-hand drawing capability can enhance the

drawing flexibility. Rotate should provide 90 degree rotation of graphical objects. Scale

should scale an object size. Front/Back should move an object display in front or in back

of other objects. Flip Up/Down should rotate an object 180 degrees. Polygons and arcs can

be added to the graphical primitives. A library of shapes would help teachers with non-

artistic inclinations.

28

APPENDIX A

DRAWGRAPH USER'S GUIDE

Introduction and Purpose.

DRAWGRAPH is a graphic tool specially designed for defining graphical objects to
be used in intelligent computer-assisted instruction systems. The graphical objects are
created using primitive objects such as lines, paths, boxes, circles, ellipses etc. as well as
free-hand drawings. lhrough a menu selections the line thickness of the drawing can be
,defined. Users can also define whether or not the line will have an arrow end. The primitive
objects are movable for arrangement by click-and-dragging the mouse middle-button.

DRAWGRAPH derives filenames into which the objects will be saved from the
teacher's tutoring program, the program where all rules concerning the tutored skill are
defined. This requires that the tutoring program be created first before attempting to run
DRAWGRAPH. These filenames represent facts in the tutoring program and are displayed
in a browser menu, which can be selected by the users to name the object's files. The users
also have the freedom to make a filename other than the one offered by DRAWGRAPH
by typing it. The users specify part of the drawing that will be saved using 'clip' and 'cut-
and-save' features, and the drawing objects are saved as bitmap files.

DRAWGRAPH is written in Prowindows, an object oriented graphic language
extension of Prolog, to complement the teachers tutoring program which is written in
Proiog DRAWGRAPH compiles in Prowindows under Unix X-Window environment
The users of this tool are teachers building tutoring programs intended to run on the
augmented Professor Rowe's intelligent computer-assisted instruction system using
means-ends analysis, MEGRAPH21. The users are assumed to be familiar with Prolog and
able to write tutoring programs for sequential skills.

Products of DRAWGRAPH sessions

There are two kind of files created during a DRAWGRAPH session:

a. Object files, bitmaps files that contain the objects created during a DRAWGRAPH
session. These are objects defined by the teacher for the tutoring program. For the sake of
simplicity all object files created during DRAWGRAPH session will reside in the same
directory as the tutoring program.

b. posfile, a file containing the information about the area the objects will occupy
when they are displayed. The area information contains the filename, xy-coordinates of
upper-left corner of the area, width and height. This information needs to be stored
separately because bitmaps do not retain them.

29

DRAWGRAPH Menu Organization

DRAWGRAPH's drawing plate is of size 910 by 384 pixels (see Figure 8) and will
open together with a dialog window that contain the selection menu. The menu lay out
detail is shown in Figure 8.

2 aup pltet

C4,ffw ov".m

so"m Ofe-t~ t

bo. sss

ft in., D 1 u

Figure 7: DRAWGRAPH main-plate and the menu

1. Menu for Operate

- Group: to group several selected objects into one object.

- Ungroup: to separate a group of objects into individual objects.

- Copy: to duplicate an object.

- Save: to save a drawing object as a bitmap file.

- Display: to load a bitmap object and display it in the drawing plate.

- Erase: to erase an object.

- Clear: to erase all drawing objects from the drawing plate.

- Redraw: to refresh the screen if the drawing is messed-up.

- Exit: to exit the DRAWGRAPH session.

30

2. Menu for Create

Menu for Create cons; -s of the following buttons:

- Line: to draw straight iines.

- Path: to draw straight paths.

- Curve: to draw smoothed paths.

- Box: to draw boxes.

- Rounded: to draw boxes with rounded corners.

- Circle: to draw circles.

- Ellipse: to draw ellipses.

- Text Box: to draw string of characters inside a box.

N Dra'.Graphi 91

Operate Create Fill:

Group Line

Ungroup Path-: ..-- - -,.:. ...:.: ..-

Copy Curve

Save Box

Display Rounded

Erase Circle

Clear Ellipse

Redraw Text Box

Exit

Pen size- • 1

Line ends: Q None

Figure 8: DRAWVGRAPH menu

31

3. Menu for Fill

The 'Fill' menu consists of several shades of fill patterns, including black and
white with white fill as default Once a fill is selected by clicking the left mouse button, it
can be used to fill several objects without the need of going back to click the fill, until a
different menu is selected.

4. Pen Size

'Pen size' is a cycle menu, consisting of ten pen size selections. The pen size
indicates the thickness of a line in pixels. Pen of size one is the default. Using a pen size
bigger than half the area of an object will fill the object with black.

5. Line Ends

'Line ends' is also a cycle menu, consists of four selections: 'None', 'First
Arrow', 'Second Arrow', or 'Both Arrows', which will put arrows at line ends according
to the menu selection. Note that 'First' means the start of a line, and 'Second' is the end of
a line when it is created.

Starting DRAWGRAPH

DRAWGRAPH requires that Prolog and Prowindows are properly installed, and can
be called from DRAWGRAPH directory. At ProwinJows prompt load the following files:

- DRAWGRAPH
- common, a utility file, and
- the teacher program.

This can be done by typing '[drawgraph, common, 'program name'].'. After a
successful loading, again at Prowindows prompt, invoke DRAWGRAPH by typing 'draw'
with no argument. The drawing plate will be opened, followed by the menu dialog window.
Position both windows at your convenience, and DRAWGRAPH is ready for drawing
objects. To exit DRAWGRAPH, left-click the 'Exit' button.

Note: Before all this, you must do 'xinit' to initialize the X-Window environment if
you have not previously. If your work station does not have PROWINDOWS, you must
'rxterm' (not rlogin) to a machine that does.

Creating Objects

The first step to draw an object is to select the pen size, unless a default size is desired.
To select a pen size, click the pen size button using the mouse right button. Ten pen
selections will be displayed. Select the desired pen size by clicking the mouse left button.
Any object created after this selection will be drawn at the selected pen size. To return the
default pen size, left-click the pen-size button. If the object is a line, path, or curve, and an

32

arrow is desired to be on the line end, then 'Line ends' button should be selected before
drawing the object.

Drawing Lines

Left-click the 'Line' button in DRAWGRAPH 'Create' menu to draw lines. A sub-
menu for drawing lines as shown in Figure 9 will be displayed. This sub-menu is cancelled
by left-clicking 'Done' button.

] Drav Lines z .. •.

[Left-click and drag to draw a line.]

Figure 9: Sub-menu for drawing lines

To draw a new line, left-click 'New' button, and the button will appear 'greyed'. The
cursor is now ready for drawing a line. Left-click again at a point in the drawing area, and
drag the mouse while holding the button down to draw a line, release the mouse button to
end the line. Arrows will be drawn at line ends as specified by the 'Line ends' selection. To
draw another line, repeat left-clicking the 'New' button and left-click and drag the mouse.
If after clicking the 'New' button drawing a line is not desired, the 'greyed' button can be
released by clicking 'Cancel' button.

To erase a line, left-click the 'Erase' button, and then left-click the line to be erased.
This process can be repeated as necessary. If for some reason 'Erase' is selected but decided
not to be used, 'Cancel' button will release the 'greyed' 'Erase' button. After drawing lines,
left-click 'Done' button, and the 'Draw Lines' sub-menu will disappear. Another menu
selection then can be made.

Drawing Paths

Left-click the 'Path' button in DRAWGRAPH 'Create' menu to draw paths. A sub-
menu for drawing paths like in Figure 10 will be displayed. This sub-menu is cancelled by
clicking 'Done' button.

To draw a path, left-click 'Start' button, and the button will be 'greyed'. The cursor is
now ready for drawing a path. Left-click and release the mouse at a starting point in the
drawing area. Make another left-click to select next point for the path. A line connecting
the two points will be drawn on the drawing plate. Another point can be selected, and
another connecting line will be drawn. This procedure can be repeated as necessary. As in
line drawing, arrows will be added at the path ends according to the 'Line ends' selection.
To stop the path drawing click the 'Cancel' button from the sub-menu. To draw another

33

path, left-click the 'Start' button again and repeat the process. The 'Erase' button works as
with drawing straight lines.

0 Draw Paths 1 •-

[Left-click to start and end a segment.]
CE-rase) (Done) (Cancel

Figure 10: Sub-menu for drawing paths

Drawing Curves

A curve is a smoothed path. Left-click the 'Curve' button in DRAWGRAPH 'Create'
menu to draw curves. A sub-menu for drawing curves similar to the sub-menu for drawing
paths will be displayed. Options are like those for drawing paths.

Drawing Boxes

Left-click the 'Box' button in DRAWGRAPH 'Create' menu to draw boxes. A sub-
menu for drawing boxes as shown in Figure 11 will be displayed. This sub-menu is
cancelled by clicking 'Done' button.

[] Draw Boxes I ZE

[Left-click and drag to draw a box. I
CE-ra-se) 0Do-ne) (-ne1

Figure 11: Sub-menu for drawing boxes

To draw boxes, left-click 'New' button. The button will be 'greyed', which means the
cursor is ready for drawing a box. Left-click and drag the mouse to the lower right to draw
a box, and release the mouse button to finalize the box. The box will be drawn with the
starting point as the upper-left comer and the end point as the lower-right comer. Other
options are similar to drawing previous objects.

Drawing Rounded-Boxes, Circles and Ellipses

A rounded box is a box with rounded comers. The procedure for drawing rounded-
boxes, circles, and ellipses are the same as drawing boxes. Left-click the 'Rounded',

34

'Circle', or 'Ellipse' button in DRAWGRAPH menu to draw rounded-boxes, circles or
ellipses. However, the program behaves differently as you move the mouse to the lower
right corner and release it For the rounded-boxes, the comer will be rounded after the left
button is released. As for circles and ellipses, a circle or ellipse will be drawn inside the box
after the button is released and the box will disappear. The sub-menu also looks alike.

Note: The circle will take the shortest of the box sides as its diameter.

Drawing Text-Boxes

A text-box is a box with text item centered inside the box. Drawing text-boxes consists
of two steps: drawing the box and typing the text. The procedure for drawing the box is the
same as drawing boxes. After the mouse left button is released, the text-typing sub-menu
like in Figure 12 will be displayed. Left-click at the text area, a cursor will appears at the
beginning of the line. Type in the desired text, and then left-click the 'OK' button. The text
will be displayed centered inside the previously drawn box, and the 'Write Text' sub-menu
will disappear.

ED Write Text 9D~
Enter text: __ K

Figure 12: Sub-menu for writing text for text boxes

Note: Although the text area in the sub-menu appears limited, the actual area is not. It
will scroll to the left as the text exceeds the blank line.

Shading

Objects can be filled with shades selected from the 'Fill' menu. To fill an object with
a shade, first left-click the desired shade from the 'Fill' menu. The selected menu will be
highlighted. Then bring the cursor to the object to be shaded, and left-click the object. The
interior of the object will be filled with the selected shade. To change shade, change the
shade selection by clicking the new selection, and proceed with the same procedure to
shade the object. To cancel the fill, just select white fill and click the object. White fill is
the default fill when the menu was created.

Warning: Prowindows doesn't quite completely fill some curved shapes.

Selecting Pen Size

The 'Pen size' menu is used to select the thickness of the lines drawn on the drawing
surface. The menu is a cycle menu with selection of pen-size I to 10, indicating the line

35

thickness in pixel. Pen size I is the default when the menu was created. Pen selection should
be done before drawing the object, and subsequent objects will be drawn at this pen size
selection.

Saving Objects

The 'Save' selection from the 'Operate' menu is used to save objects into bitmap files.
To save objects, left-click the 'Save' selection from the DRAWGRAPH 'Operate' menu.
A 'Clip to Save' sub-menu like in Figure 13 will be displayed.

0 Clip to Save '15•MI-I

[Left-click and drag to draw clip border.]

(_ i -yve- -C- ceT

Figure 13: Sub-menu for saving objects

Left-click 'Clip' button from this sub-menu, then draw a border box around the area
to be saved. This process is done exactly the same as drawing boxes in the 'Create' menu.
It is important to draw the border as close as possible to the objects, so the space used to
store the bitmap file will be minimum. After drawing the border, left-click 'Cut&Save'
selection to continue the saving process.

After clicking the 'Cut&Save' selection, a sub-menu for filename selection like in
Figure 14 will be displayed. The sub-menu is a browser menu with selection of filenames
taken from the teacher's tutoring program. This is the reason why the tutoring program
should be loaded at the same time with DRAWGRAPH to make it available for this
purpose. A filename can be selected from the browser by clicking a selection, or a new
filename can be typed in on the space provided. The filename selected from the browser
will be displayed on this space and can be edited as desired.

To actually save the enclosed objects click the sub-menu 'OK' button. To cancel
saving objects click the 'Cancel' button from the filename selection sub-menu.

Note: The file names in the browser are sorted alphabetically for ease of selection.

Displaying a Saved File

A bitmap saved by DRAWGRAPH can be loaded and displayed at the same position
as the position at its creation time. This is possible because the positions of the files are
stored in a position file. This file is created and maintained throughout the session, and will
be used by both the DRAWGRAPH, and the MEGRAPH21 (the tutoring system) to
position a picture on the screen. To display a file on the drawing plate click 'Display'

36

selection from DRAWGRAPH menu A filename selection sub-menu similar to the one
used for saving objects will be displayed. The filename can be selected through the browser
or defined by typing it. Vf the file is in the directory it will be loaded and displayed,
otherwise the menu will be cancelled.

0J Filervaye :selectiown -9-D

oxygen-i s.safe
oxygen.i s.tested
oxygen-tester-is s.tested
ref1ashi ngi s-not-watched
refl ashi ng.i s-watched
repai r_1 ocke r-i s-1 ocati on
tea'J s-debri efed
teant Ls-equipped
teawLi s-not-equi pped
waterJ s.estimated

Click or type filename.
Filename:
(UK- (cancel)

Figure 14: Sub-menu for selecting a filename

Note: A displayed object called using the above menu is different from a created
object. A created object can be saved and manipulated like erased, moved, grouped, etc.,
but the displayed object cannot. A created object may overlap a displayed object, but can
still be saved without being 'contaminated' by the displayed objects. This feature is an
advantage for positioning a new object relative to previously defined ones.

Grouping and Ungrouping Objects

Primitive objects drawn on the drawing plate (lines, paths, curves, boxes, circles etc.)
are individual objects. It can be moved, and rearranged to make a collection of objects. To
make several primitive objects as one object so it can be moved together, those individual
objects need to be grouped. The 'Group' selection of DRAWGRAPH 'Operate' menu is
used to group selected primitive objects into one object. After grouping, the object can be
manipulated as a unit. Operation like erase and move will work on the entire group
member.

37

To group several objects into one group, select the 'Group' button from the 'Operate'
menu. A 'Group Objects' sub-menu will be displayed. The next step is to select the member
of the group. This is done by clicking the 'Select' button and left-click the selected object
anywhere in the imaginary box surrounding it. The selected object will be displayed in
'greyed' form. Selection of objects is done one by one. After all member have been
selected, click the 'Group' button. The selected members will be displayed normally, and
they become one unit. The group sub-menu will disappear. To cancel operation any time
before clicking the 'Group' button, left-click the 'Cancel' button.

The 'Ungroup' button is used to ungroup a previously grouped objects. Left-click the
'Ungroup' button and then select the grouped object. The selected object will now back as
individual objects and can be manipulated individually.

Note: Group operation only works for individual primitive objects. To group a
"grouped objects, it must be ungroupped first into individual primitives.

Copying an Object

An object can be duplicated by left-clicking the 'Copy' button from the 'Operate'
menu, followed by left-clicking the object to be duplicated. A duplicate object will be
displayed five pixels away from the original. The duplicate object can be manipulated like
the original object.

Moving Objects

Objects created in the drawing plate are movable, so they can be rearranged as desired.
To move an object, middle-cli"- the object anywhere inside an imaginary rectangle
surrounding it, and drag the mouse while holding the middle button down to the desired
position. Release the button to finalize the new position. The object is now drawn at the new
position. When objects overlap each other sometime it is difficult to determine the correct
rectangle area. Moving the overlapping objects around will solve this problem.

Final Note

The rectangle area surrounding an object will also prevent the starting of a drawing.
This is because the drawing area recognizes the left-click inside the rectangle differently.
To avoid this, start the drawing at some clearly free space, then move the object to the
desired position. To finalize a drawing inside the rectangle area is all right.

38

APPENDIX B

MEGRAPH21 USER GUIDE

Introduction and Purpose

MEGRAPH21 is a domain independent intelligent computer-assisted instruction
system that teaches sequential skills. The system uses objects either graphical or textual as
user-computer interface. The tutoring is displayed in a main window, and the user selects
an action from a list of actions displayed in a browser window using a mouse.

MEGRAPH21 is an augmentation of Professor Rowe's METUTOR21 [ROWE 90],
and is written in PROWINDOWS, the object oriented graphic language extension of
PROLOG. It compiles in PROWINDOWS under Unix X-Window environment. The
users of MEGRAPH21 are teachers building a tutorial program and students learning the
skill using the tutoring system. The users are assumed to be familiar with PROLOG.

MEGRAPH21 session window

MEGRAPH21 session window consists of one main window with a browser window
on the right. A graphical display window displays the state of the tutoring graphically.
Above the graphical display windows are the introduction display window, objectives
display window, and current state window. Below the graphical display window are the
action selection window and the tutoring window.

The introduction window gives the problem context. It introduces the tutor to the
student as to give a general idea of what is happening. The objective window gives the
objective definition, which is the final goal the student should achieve. The. current state
window shows the definition of the condition at this point of simulation. The action
selection window displays the last operator selected by the student. The tutoring window
displays whatever the tutor says or comments. This comments are made by the inference
engine as the tutoring progresses.

Invoking MEGRAPH21

MEGRAPH21 requires that PROLOG and PROWINDOWS are properly installed,
and can be called from MEGRAPH21 directory. To run MEGRAPH21 successfully the
following files should reside and be loaded in the same directory:

1. MEGRAPH21.
2. COMMON, a utility file.
3. The teacher's tutorial program.

This is done by typing '[megraph2l, common, program name]' followed by
<ENTER> at PROLOG prompt. If the graphical representations are already defined, the

39

bitmap files and the text file that retains their position, posfile, must also be in the same
directory These files are created by the teacher using DRAWGRAPH, a graphics tool (see
DRAWGRAPH User Guide).

Note: Before al this, you must do 'xinit' to initialize the X- Window environment if
you have not previously. If your work station dies not have PRONWINDOWS, you must
'rxterm' (not rlogin) to a machine that does.

MEGRAPH21 Main Menu

After successful loading the tutoring system is started by typing 'go', and a main menu
will be displayed. The main menu has three selection buttons: Go, Help and Exit.

Go: continue the tutoring system and start the learning process
Help: show on-line help
Exit: back to PROLOG prompt

Note No on-line help is provided at this moment. Pressing Help button will do
nothing.

Learning Session

Clicking 'Go' from the main menu using the mouse left button will start the session
and display the session window. Part of the session window that can be manipulated is the
list of operators in the browser window. This window shows all possible operators in the
tutorial program. To select an operator clicking the operator using the mouse left button.
The selected operator will be greyed and the tutor states and graphics display will change
according to changes caused by the applying of the operator. The selected operator will be
displayed in the operator selection box under the graphical display.

Exiting the Session Window

When the session ends, the student exit the tutoring system by selecting Exit from the
browser window. The session window will be closed, but the main menu is still displayed.
Clicking 'Go' again will repeats the learning session.

Note: You can exit the learning session at any time.

Exiting MEGRAPH21

To exit MEGRAPH21 completely, click 'Exit' button from the main menu. This will
bring the PROLOG prompt back.

40

APPENDIX C

SOURCE CODE OF DRAWGRAPH

% Program : DrawGraph
% Purpose This graphics editor program is a tool for teachers to specify graphic
% objects for their tutoring programs. Drawings are created using
% primitives building-blocks such as lines, paths, boxes, circles etc. and
% stored in a bitmap ile.
% Author : Francius Suwono
% Date April 6, 1992
% Source Prolog Prowindows
% Notes This program should be loaded together with the following programs:
0/0 a. common, a utility file
% b. the teacher's tutonng program
% Also: posfile, a file that contains area information of objects should% be in the same directory.

% Main calling routine.
% draw/0 creates the main plate for drawing pictures, and makes the necessary
% preparation like loading information about previous picture position, calls
% the main menu and opens both drawing plate and the menu.

: usemodule(library(interpret messages)).
: usemodule(library(dialog)).
: use module(library(messages)).
: use_module(library(rename)).

draw
not(object(@pic)) ->
% Load picture position from posfile.
(read_position,

% Create main plate @pic
clear(@pic),
new(@pic, picture('Main plate', size(930,384))),
send..list(@pic, [horizontal scrollbar, verticalscrolibar], off),

clear(@bit),
new(@bit, bitmap(930,384)),

% display the main plate and the menu.
send(@pic, open),
draw-menu) I true.

41

% draw menu/0 creates menu to draw objects
% Object @maindraw is the main dialog window for drawing
% It contains menus for:
% - operate, for drawing manipulation
% - create, to create primitive drawing
% - fill, to fill area with pattern
% pen size, to select en thickness

F line ends, to speci fy arrow for line's end

draw-menu:-
% the dialog window
new(@maindraw, dial og(DrawGraph')),

% menu for operate
new(@ioperate, menu('Operate', choice, cascade(@maindraw, select, 0))),
send list(@operate, append, ['Group', 'Ungroup', 'Copy', 'Save',
'Di splay', 'Erase', 'Clear', 'Redraw', 'Exit']),

% menu for create.
new(@create, menu('Create', choice, cascade(@maindraw, select, 0))),
send .list(@create, append, ['Line', 'Path', 'Curve', 'Box',
'Rounded', 'Circle', 'Ellipse', 'Text Box']),

% menu for fill.
new(@fill, menu('Fill. ',choice, cascade(@maindraw, select, 0))),

% make fill bitmaps for menu display
make-fill,
clear(•wht),
clear(• -grl),
clear((gr2),
clear(Ugr3),
clear(pIgr4),
clear(@blk),
new(@ wht, menu item('White',O)),
new(. gr I, menu .tem('Grey I',0)),
new((gr2, menu item('Grey2',O)),
new(Cgr3, menuitem('Grey3',O)),
new((gr4, menu item('Grey4',O)),
new((blk, menu item('Black',0)),
send(wht, image, @white),
send(c "grI, image, @grey l),
send(' igr2, image, @grey2),
send((gr3, image, (@grey3),
send((gr4, image, Vgrey4),
send((iblk, image, @black),
send lst(@fill, append, [@wht, @grl, @gr2, @gr3, @gr4, @blk]),

42

% menu for pen size.
new'@ pen, rnenu('Pen size: ', cycle,cascade(@maindraw, select, 0))),
sendyi st(@pen, append, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10)),

% menu for ends.
new(@ends, menueLine ends:', cycle, cascade(@maindraw, select, 0))),
Sen d ist(@ends, append, ['None', 'First Arrow`,'Second Arrow',
'Both Arrows']),

% arrange menu position.
send(@ maindraw, append, @operate),
send(cetrght, @operate),
send(@ fille,a r'ig-ht, @create),
send(®@pen, below, @fill),
send(@ ends, below, @pen),
send(@ maindraw, open).

%-- - - -- - - - - - - - - - - - - -
% make grey bitmap

make-fill :
fill -white(@ white),

fill~grey2(-gr~yY2).
fill~grey3(@grey3),
fill~grey4(Sgrey4),
fill-black(@black).

clear(Bit),
new(Bit, bitmap(60, 18)),
new(Grey, bitmap(4,2)),
send Ii st(Grey, set, [poi nt(O,O), poi nt(2,O)]),
send(bit, replicate, Grey).

fihllgrey2(Bit):
clear(Bit),
new(Bit, bitmap(60, 18)),
new(Grey, bitmap(2,2)),
send list(Grey, set, [point(0,0), point(1,l)]),
send-(Bit, replicate, Grey).

fil1.grey3(Bit):
clear(Bit),
new(Bit, bitmap(60, 18)),
new(Grey, bitmap(5,2)),
send list(Grey, set, [point(0,O), point(2,0), point(3,0), point(1,I),
poi nt(2, I), poi nt(4, I1)]),
send(Bit, replicate, Grey).

43

fill..grey4(Bit)
clear(Bit),
new(Bit, bitmap(60, 18)),
new(Grey, bitmap(3,3)),
send list(Grey, set, [point(O,O), point(O,2), point(l,1), point(2,O),
point(2,2)]),
send(Bit, replicate, Grey).

fill white(Bit) :
clear(Bit),
new(Bit, bitmap(60, 18)),
send(Bit, clear).

fill black(Bit) :
* clear(Bit),
* new(Bit, bitmap(60, 18)),

send(Bit, clear),
send(Bit, invert).

% selections for operate.

select(vlenu,'Group'):
not(obj ect(@ exit)).
group_ object.

select(Menu,'Ungroup') -
not(obj ect(@ exit)),
ungroup~obj ect.

select(Menu,'Copy') :
not(obj ect(@exit)),
copy~obj ect.

select(Menu, 'Save') :

save-objectl.

select(Menu,'Display'):

not(object(@exit)),

erase object.

select(Menu,'Clear) :
not(obj ect(@exit)),
send(@pic, clear).

44

select(Menu,'Redraw')

sen(3pcredraw).

select(Menu,'Exitf)
not(obj ect(@exi t)),
exit-draw.

% selections to create objects

select(Menu,'Line')
not(obj ect(@exit)),
create-line.

select(Menu,'Path')
not(obj ect(@exit)),
createjpath

select(Menu,'Curve') .
not(obj ect(@exit)),
create-curve.

select(Menu,'Box') :
not(obj ect(@exit)),
create-box.

select(Menu,'Rounded')
not(obj ect(@ exit)),
create-rounded.

select(Menu,'Circle') ý
not(object(@exit)),
create-circle.

select(Menu,'EI i pse') :
not(obj ect(@exit)),
create-ellipse.

select(Menu,'Text Box') :
not(obj ect(@ exit)),
create-textbox.

% selection for pen

pen(X, Pen):
get(@pen, selection, X),
atom -chars(X, [M]),
Pen is N -48.

45

%
% selection for fill

select(Menu,'Grey I') :-
• fillobject(@pic. @grey i)

select(Menu.'Grey2) :-
fillobject(@pic, @grey2)

select(Menu,'GreyS') :-
fillobject(@pic, @greyS)

select(Menu,'Grey4') :-
filiobject(@pic, @grey4)

select(Menu,'White') :-
fill...object(@pic, @white)

select0Henu,'Black') :-
fill object(@pic, @black)

fillobject(Pict'ure, Fill) :-
send(Picture, clicked, cascade(Picture, fill, Fill)).

fill(Picture, Fill) :-
getref(picrure, current, Fig),
getref(Fig, graphicals, Ch),
get(Ch, listrefs, [Graphical[_]),
send(Graphical, fill, Fill).

%
% selections for ends.
%
arrows(Line, Ends):-

get(@ends, selection, Ends),
putarrows(Line, Ends).

putarrows(Line, 'First Arrow') :-
send(Line, anows, first).

putarrows(Line, 'Second Arrow'):-
send(Line, arrows, second)

putarrows(Line, 'Both Arrows') :-
send(Line, arrows, both)

putarrows(Line, ...)

46

% routines for creating objects

% create lines

create-line :
not(obj ect(@draw~palette)) -

(new di alog(@drawjpalette, 'Draw Lines', draw-line),
send(@idraw...palette, open)) Itrue.

% callbacks
line new(Picture, J:-

retractal i(create flag),
send(Picture, lert-down, cascade(Picture, start-line, 0)),
process callbacks(retract(create flag)).

start-)ine(Picture, Pos) -
get(@pic, last-click, Point),
Point -point(X,Y),
new(Line, line(X,Y,X,Y)),
pen(Size, Pen),
arrows(Line, Ends),
send(Line, pen, Pen),
send(Line, start, Pos),
send(epic, left drag, message(Line, end, 0)),
new(Fig, figure3,
send(Fig, append, Line),
send(@pic, display, Fig),
send(@ pic, left-up, cascade(@pic, graph-cancel, 0)).

% generic callbacks for erase, cancel and done
graph erase(Picture,) :

send(PiciUre, clicked, cascade(Picture, erase, 0)),
process-cal lbacks(retract(createjflag)).

erase(Picture, J3:
get - ef(Picture, current, Fig),
get...ef(fig, graphicals, Ch),
get(Ch, list - efs, [GraphicalU),
ci ear(Fig),
create cancel(Picture, J.

graph done(Picture, Dialog) :
create cancel(Picture, J,
clear(FDialog).

grapbcancel(Picture, Dialog)
create-cancel (Picture, J.

47

create cancel(Picture, j
send(Picture, clicked, 0),
send(Picture, left up, 0),
send(Picture, left down, 0),
send(Picture, left-drag, 0),
uniqueassert(create flag).

% dialog declarations
draw line(., label('[Left-click and drag to draw a line.]',0), below,C.
draw lineL, button('New, cascade(@pic, line new, 0)), below, []).
draw linet, button('Erase', cascade(@pic, gra~ph erase, 0)), right, []).
draw-line(, button('Done', cascade(@&i, graph-done, @draw..palette)), right, 0).
draw-line(, button('Cancel', cascade(@ pic, graph cancel, @drawjpaiette)), right, C)

% create paths

createjpath :
not(object(@draw..palette)) -

(new dialog(@draw~palette, 'Draw Paths', drawjpath),
send(@drawjpalette, open)) I true.

% callbacks
path start(Picturej

retractal I (create flag),
send(Picture, left-up, cascade(Picture, path, 0)),
process callbacks(retract(create flag)).

path(Picture, Pos) :
new(Fig,figure),
new(Path, path),
pen(Size, Pen),
send(Path, pen, Pen),
send(Path, append, Pos),
send(Fig, append, Path),
send(Picture, display, Fig),
send(Picture, left-up, rnessage(Path, append,0)).

% dialog declarations
draw~pathL, label('CLeft-click to start and end a segment.]',0), below, C)
drawjpath(., button('Start', cascade(@pic, path start, 0)), below, C]).
drawjpath(, button('Erase', cascade(@ pic, graph -erase, 0)), right, C)
draw..pathL , button('Done', cascade(@ ypic, graph done, @drawJpalette)), right, f)
drawjpath(, button('Cancel'. cascade(c@pic, graph-cancel, @drawjpalette)), right, [)

48

%\

% create curves

create-curve
not(object(@drawjpalette))->
(new dial og(@drawpalette, 'Draw Curves', draw-curve),
send(@draw_palette, open)) I true.

% callbacks
curve start(Picture, .

retractall(create flag),
send(Picture, lefi up, cascade(Picture, curve, 0)),
process callbacks(retract(createflag)).

curve(Picture, Pos)-.-
new(Fig,figure),
new(Curve, path),
pen(Size, Pen),
send(Curve, pen, Pen),
send(Curve, append, Pos),
send(Curve, smooth, on),
send(Curve, intervals, 10),
send(Fig, append, Curve),
send(Picture, display, Fig),
send(Picture, left-up, message(Curve, append,O)).

% dialog declarations
draw curve(_, label('[Left-click to start and end a segment.]',O), below, []).
draw curve(_, button('Start', cascade(@pic, curve start, 0)), below, [).
draw curve(_, button('Erase', cascade(@pic, graph_erase, 0)), right, []).
draw curve(, button('Done', cascade(@pic, graph-done, @draw_palette)), right, []).
draw curve(_, button('Cancel', cascade(@pic, graph_cancel, @drawpalette,, right, []).

% create boxes
% create boxes

create-box :-
not(obj ect(@draw_palette)) ->
(new di alog(@draw.palete, 'Draw Boxes', draw box),
send(•@draw.palette, open)) I true.

% callbacks
box new(Picture, _

retractall(create flag),
send(Picture, leFitdown, cascade(Picture, start box, 0)),
process-callbacks(retract(create-flag)).

start box(Picture, Pos) :-
new(Fig,figure),

49

new(Box, box),
pen(Size, Pen),
send(Box, pen, Pen),
send(Box, position, Pos),
send(Picture, left-drag, message(Box, comner, 0)),
send(Fig, append, Box),
send(Picture, display, Fig),
send(Picture, left-uzp, cascade(Picture, refresh, 0)).

refresh(Picture,J
send(Picture, redraw),
create cancel (Pi cture, J.

No dialog declarations
draw-box(_, label('[Left-click and drag to draw a box.]',0), below, C)
draw._box(_., button('New', cascade(@pic, box new, 0)), below, []).
draw box(., button('Erase', cascade(@ pic, graph erase, 0)), right, []).
draw boxL, buttori('Done', cascade(@ pic, graph ýdone, @draw..palette)), right, [)
draw -boxL_, button('Cancel', cascade(@pic, grap _Cancel, @drawjpalette)), right, [)

% create- rone boxes-----

%create roundedboe

not(object(@drawjpalette)) -

(new dial og(@draw~palette, 'Draw Rounded', draw-rounded),
send(@~draw..palette, oper~)) Itrue.

% callbacks
rounded..new(Picture,J

retractallI(create flag),
send(Picture, lefi down, cascade(Picture, start-rounded, 0)),
process-callbacks-(retract(create..flag)).

start rounded(Picture, Pos)
new(Fig,figure),
new(Rounded, box),
pen(Size, Pen),
send(Rounded, pen, Pen),
send(Rounded, position, Pos),
send(Picture, left-drag, rnessage(Rounded, comner, 0)),
send(Fig, append, Rounded),
send(Picture, display, Fig),
send(Picture, left-uzp, cascade(Picture, radius, Rounded)).

radius(Picture, Rounded) :
send(Picture, redraw),
send(Rounded, radius, 8),
create Cancel(Picture, J.

50

% dialog declarations
draw rounded(.., label('[Left-click and drag to draw a rounded box.1.0O), below, []).
draw -roundedL, button('New', cascade(@pic, rounded new, 0)), below, D
draw rounded(,, button('Erase', cascade(@pic, graph erase, 0)), right, 0).
draw roundedt, button(CDone', cascade(@ pic, graph~done, @draw..palente)),

right. (1).
draw-roundedL, button('Cancel', cascade(@pic, graph-cancel, @drawjpalette)),

right, IR)

% create circles

create-circle :
not(obj ect(@draw..palecie)) -

(new dial og(@drawjpalette, 'Draw Circle', draw-circle),
send(@idrawjpalette, open)) I true.

% callbacks
circle new(Picture, _

retractal Il(create flag).
send(Picture, lefi-down. cascade(Picture, start_circle, 0)),
process call backs(retract(createfl ag)).

start circle(Picture, Pos)
clear(@b),

new(@b, box),
new(@ f, figure),
send(@b, position, Pos),
send(Picture, left -drag, message(@b, comner, 0)),
send(@f append, @~b),
send(@fK, greyed, on),
send(Picture, display, @f),
sernd(Picture, left_.up, cascade(Picture, draw-circle, 0)).

draw-circle(Picture, -)
send(Picture, erase, @f),
graph cancel (Picture, J,
get(@b, area, area(X,Y,W,H)),
min(W, H, D),

% draw the circle
new(Fig,figure),
new(Circle. circle),
send(Circle, area, area(X, Y, D, 13)),
pen(Size, Pen),
send(Circle, pen, Pen),
send(Fig, append, Circle),
send(Picture, display, Fig),
clear(@b),

clear(Qf),
send(Picture, redraw)

% dialog declarations
draw -circle(, label('(Left-click and drag to draw a circle.]',O), below, [)
draw circle(, button('New', cascade(@pic, circle-new, 0)), below, f)
draw...circle(, button('Erase', cascade(@ pic, graph-.erase, 0)), right, [)
draw...circlcC_, button('Done', cascade(@pic, graph done, @drawjpalette)), right,[.
draw circleC, button('Cancel', cascade(@ pi,@draw~paette)),

right,].

% create ellipses

create-ellipse :
not(obj ect(@draw~palecue)) -

(new dial og(@draw..palette, 'Draw Ellipse', draw-ellipse),
send(G-draw~palette, open)) I true.

% callbacks
ellipse new(Picture,)

retractal)(Fieate flagt),
send(Picture, iert dowjn, cascade(Picture, start-ellipse, 0)),
process~.cal lbacks(retract(create...fl ag)).

start ellipse(Picture, Pos):
clear(@b),
clear(&),
riew(' b, box),
new((f, figure),
send((@b, position, Pos),
send(Picture, left-drag, niessage(@b, corner, 0)),
send(@f~, append, @b),
send(@f, greyed, on),
send(Picture, display, @f),
send(Picture, left-up, cascade(Picture, draw-ellipse, 0)),

draw-ellipse(Picture, J):
graph cancel(Picture, J,
get(t@b. area, area(X,Y.W,H)),

% draw the ellipse
new(Fig,figure),
new(Ellipse, ellipse),
send(Ellipse, area, area(X, Y, W, H)),
pen(Size, Pen),
send(Ellipse, pen, Pen),
send(Fig, append, Ellipse),
send(Picture, display, Fig),
clear(@b),

52

clear(e~f,
send(Picture, redraw).

% dialog declarations
draw -ellipse(, label ('[Left-cl ick and drag to draw an ellipse.]',O), below, C)
draw -ellipse(, button('New', cascade(@pic, ellipse-new, 0)), below, fl).
draw -ellipse(_, button('Erase', cascade(@pic, graph erase, 0)), right, []).
draw ellipse(, buttoneDone', cascade(@pic, graph-done, (@drawjpalette)), right,)
draw-ellipse button('Cancel'. cascade(@spic, graph-cancel, @drawjpalette)),

%k

% create text blocks
% -_-- - -_ _-- - -- -- - -

create textbox :
not(object(@draw~palette)) ->
(new dialog(@draw..palette, 'Draw Textbox', draw textbox),
send(@draw~palette, open)) I true.

% callbacks
textbox-new(Picture,J

retractail(create flag),
send(Picture, lert down, cascade(Picture, start textbox, 0)),
process-callbacks(retract(create flag)).

start-textbox(Picture, Pos)
clear(@box),
clear(@tb),
clear(@ fig),
new(@ fig, figure),
new(@ box, box),

new(@b, ext block),
send((box, position, Pos),
send(@ fig, append, @box),
send(@ fig, append, ti tb),
send(Picture, display, @fig),
send(Picture, left_drag, message(@box, comner, 0)),
send(Picture, left -up, cascade(Picture, create-text, 0)),
clear(@draw text).

create text(Picture, _3:
new dialog(@draw text, 'Write Text', draw-text),
senJ(@draw_icxt, open).

textbox-ok(Picture, -)
get(@box, area, Area),
send(@tb, area, Area),
send(@tb, format, center),
get(ti, selection , Text),
send(@tb, string, Text),

53

get ref(@box, duplicate, Box),
new(Tb, text block(Text, Area, center)),
duplicate-textbox(lb, Box),
clear(@draw-text),
create Cancel(Picture. J.

duplicate textbox(Th, Box)
new(Fig, figure),
send list(Fig, append, [Tb, Box]),
get(Th, area, Area),
send(~ pic, display, Fig),
clear(I fig).

% dialog declarations
draw textboxL_ label('[Left-click and drag to draw the box.]',O), below,11).
draw -textbox(_, button(1New', cascade(@Gpic, textbox new, 0)), below, U).
draw itextboxU button('Erase', cascade(@ pic, graph erase, 0)), right, 1)).
draw textboxL_, button('Done', cascade(cgpic, graph done, @drawjpalette)), right, a).
draw textboxL, button('Cancel', cascade(@ pic, graph cancel, @drawjpaletne)), right,fl

draw-text(@ti, text itern('Enter text. ', ", 0), below, []).
draw-text(., buttoni(1OK', cascade(@pi c, textbox ok, 0)), right, 0).

% subroutines for operates

% subroutines for groupping objects

group object
demolish(@ oldfig holder),
demol ish(@ group_ hol der),
demolish(@pos holder),
(not(object(@dr-awjpallete)) -

(new(®rgroup-holder, chain),
new(@ -ol dfig hol der, chain),
neW(pos holder, chain),

ne~dalg(drwpallIete, 'Group Obj ects', group),
sendC(' rawjpallete, open))) I true.

% callbacks
group~sel ect(Pi cture, J

retractal l(operatejflag),
send(Picture, clicked, cascade(Picture, selectgroup, 0)),
process callbacks(retract(operatejflag)).

selectjroup(Picture, J :

% mark figure with greyed display
getjyef(Picture, current, Fig),

54

send(Fig, greyed, on),

% get figure position
get ref(Picture, current, Fig),
get(Fig, position, Pos),
send(@pos-holder, append, Pos),

% get the graphical
get ref(fig, graphicals, Ch),
get(Ch, list refs. (GraphicalU),
send(@gro-up_.hol der, append, Graphical),

% append old figure to fgure holder
send(@oldfigjiolder, append, Fig),
send(Picture, clicked, 0),
uniqueassert(operate flag).

group(Pi cture, _J:

% erase old figure from display
get(@ol df'ig holder, list-refs, List),
sendli st(Li st, erase),

% make position correction
get(ngroupjholder, list refs, Grouplist),
get(@pos holder, list, Po-slist),
correct..piisition(Groupli st, Posh st),

% make a new figure for the group
new(Fig, figure),
sendjlist(Fig, append, Grouplist),
send(Picture, display, Fig),

% clean-up
operate -cancel(Picture, J,
send-liist(@group hol der, delete, Grouplist),
demolish((@oldfig..holder),
deniolish(group holder),

demoishýpos.ho-lder),
operate .acel(P-icture, J,
clear(@Tdrawjpallete).

correct-position([J, []).
correctjposition([GIG I], [PjP 1]):-

send(G, position, P),
correctjposition(GIP 1).

group_ cancel(Picture,3
greyed .off(@oldfig holder),
demoli sh(@ol dfighol der),

55

demolish(@group-holder),
deniolish(@pos...holder),
cl ear(@drawjp~aifete).
operate-cancel (Picture, 3

greyed~ofl([]).

greyed off([F,F 1]):-
send(F, greyed, off),
greyed(F I).

operate-cancel(Picture,)
send(Picture. clicked, 0),
send(Picture, lefty- p, 0),

*send(Picture, left- down, 0),
send(Picture, left drag, 0),
uniqueassert(oper-ate flag).

% dialog declarations
group(_, label('[Select drawing by left-cliking. JO), below, [)

group(, button('Select', cascade(@ pic, group select, 0)), below, [)
group(, button('Group', cascade(@pic, group, 0)), right, 0).
group(_, button('Cancel', cascade(@pic, group-cancel, 0)),

right, [)

clear-chain :
demolish(@ oldfig_,holder),
dernolish(@,group-hold er),
deniolish(@ pos-holder).

% subroutines for ungroupping objects

ungroup_ object
not(object(drawjpaliete)) ->
(new dial og(@drawypallete, 'UnGroup Objects', un~group),
send(~draw~pallete, open)) I true.

% callbacks
ungroup.,select(Picture, J

retractall(operate-flag),
send(Picture, clicked, cascade(Picture, selectyungroup, 0)),
process callbacks(retract(operate..flag)).

select ungroup(Picture, J):

% greyed the selected figure
get ref(Picture, current, Fig),
send(Fig, greyed, on),

56

send(Picture, clicked, 0),
uniqueassert(operate flag).

unjgroup(Picture, J. :-
gtref Picture, current, Fig),

get(Fig, reference~point, poi nt(X,Y)),

% get the graphical
get -ref(Fig, graphicals, Ch),
get(Ch, list refs, Graphicals),
% ungrouplit
separate(Picture, Fig, Graphicals, X, Y),
send(Fig, erase),
send(Picture, redraw),
operate~cacel (icture, J,
ci ear(@drawjpallete).

separate(P, F, [], -, j.separate(P, F, [GR3 71 X, Y)
send(F, delete, G),
get(G, position, point(X I, Y I)),
X2 is XI +X,
Y2 isYI + Y,
send(G, position, point(X2, Y2)),
new(Fig, figure),
send(Fig, append, G),
send(P, display, Fig),
separate(P, F, GI, X, Y).

ungroupcancel (Picture, J):
operate cancel(Picture, 3
clear(@Tdrawjpal lete).

% dialog declarations
un~group(, label((Select drawing by left-cliking.]',0), below, [)
un..groupL, button('Select', cascade(@pic, ungroup_,select, 0)), below, [)
un~group(, button(:Un-group', cascade(cepic, un~group, 0)), right, [)
unjroup(_, button('Cancel', cascade(@pic, ungroup_ cancel, 0)),

% subroutines for copying object

copyoqbj ect
send(@pic, cli-k~ed, cascade(@pic, copy, 0)).

COPY(PiCtUre, _).
get ref(Picture, current, Fig),
get(Fig, referencejpoint, point(XY)),

57

% get the graphical
get ref(Fig, graphicals, Ch),
get(Ch, list refs, Graphicals),
% copy each member
-aew(Figl, figure),

duplicate(Picture, Fig), Graphicals, X, Y),
send(Picture, display, Fig)),
send(Picture, clicked, 0).

duplicate(P, F, [], _, J.

duplicate(P, F, [GIRest], X, Y)
get(G, area, area(XI , Y1, WI, DI)),
X2 is Xl +X+5,
Y2 is YI +Y+5,
gettef(G, duplicate, G I),
send(Gl, area, area(X2, Y2, WI, DI)),
send(F, append, G I),
duplicate(P, F, Rest, X, Y).

% subroutines for erasing object

eraseobject :-
send(@pic, clicked, cascade(@pic, erasel, 0)).

erase I(Picture, J :-
getjtef(Picture, current, Fig),
gettef(Fig, graphicals, Ch),
get(Ch, list refs, [GraphicalU),
clear(Fig),
send(Picture, clicked, 0).

% subroutines for saving object

save-object
clear(@clipped),
(not(object(@drawpalette)) ->
(new dialog(@draw_palette, 'Clip to Save', draw clip),
sendC@draw.palette, open)) I true).

% callbacks
clip(Picture, _

retractall(operatejflag),
send(Picture, left down, cascade(Picture, start-clip, 0)),
process callbacks(retract(operate flag)).

58

start clip(Picture, Pos)
cleaar((clipper),
new(@clipper,figure),
new(@box, box),
send(@box, position, Pas),
send(Picture, left drag, rnessage(@box,, corner, 0)),
send(@clipper, append, @box),
send(Picture, eisplay, @clipper),
assert(operate..flag).

clip_ýcancel(Picture, _J:
uniqueassert(operate -fl ag),
clear(@clipper).

cut save(Picture, _ :
get ref(Picture, figures, Fig Chain),
get(Fig Chain, list refs, Figu res),
draw figure(@bit,1Pigures),
get((tbox, area, area(X, Y, W, H)),
send(@but, clip area, area(X, Y, W, H)),
get ref(@bit, cfi~p, Clipped Bit),
renam(C lippedBit, @clip-ped),
select-filIenamec(3save).

draw figure(Bitmap, [@clipper)).
draw figure(Bitmap, [FiglFig...Rest])

get(Fig, reference.,point, point(X, Y)),
get ref(Fig, graphicals, Ch),
get(Ch, list refs. Graph -List),
draw~graph~icals(Bitmap, Graph-.List, X, Y),
draw-figure(Bitmap, FigRest).

draw~graphicals(Bitmap,[], _,j
draw~graphicals(Bitmap, [GraphiGraph Rest], X, Y):

get(Graph, position, point(XI, YI)),
X2 is XI + X
Y2 isYI + Y,
send(Graph, position, point(X2, Y2)),
send(Bitmap, draw 'in, Graph),
send(Graph , position, poi nt(X I, Y 1)),
drawjgraphicals(Bitmap, Grapb.Rest, X, Y).

save-done(Picture, Dialog):
send(@ bit, clear),
clear(@clipper),
graph done(Picture, Dialog).

59

% callbacks for saving to filename
% if OK use the string text as filename to store the drawing
% save drawing to Filename, and assert the drawing position as fact

pressed(@save, 'OK') :-
get(fi, selection, Filenamne),
send(@clipped, save, Filename),
% assert the position reference
get(bit, clip area, area(X, Y, W, H)),
P -.. [area, Filename, X, Y, W, H],
uni queassert area(P),
writeposition,
clear(I save),
clear((clipper),
clear(@clipped).

pressed(@save, 'Cancel')
clear(@ clipper),
clear(@save).

% dialog declarations for clipping
draw clip(, label('[Left-click and drag to draw clip border. 1',O), below, [)
draw clip(, button('Clip', cascade(@pic, clip, 0)), below, fl).
draw clip(_, button('Cut& Save', cascade(@pic, cut save, 0)), right, [)
draw clip(.., button('Done', cascade(@pic, save_done, @drawT.palette)), right, [)

_rw..lp, button('Cancel', cascade(@pic, clip_cancel, 0)), right, [)

% subroutines for displaying objects

di spl aypbj ect
not(object(@draw .. alette)) -

(selectfilename(G(show)) I true.

pressed(@ show, 'OK') -
get(@ti, selection, Filename),
draw(Filename),
clear(@show).

pressed(@ show, 'Cancel'):
clear(@show).

draw(Filename) :
area(filename, X, Y, W, H),
new(Temp, bitmap(W, H)),
send(Temp, load, Filename),
send(Temp, position, point(X,Y)),
send(@pic, display, Temp).

60

% exit drawgraph

exit draw :-
not(object(@draw.palene)) ->
(new dialog(@exit, 'Prompter', exit),
sende(exit, open)) I true.

% dialog declarations for exiting the program
exit(, label('Do you really want to exit DrawGraph?'), ., 0).
exit(, button('OK', pressed), below, 0).
exit(, button('Cancel', pressed), right, []).

% exit the program and clear all objects.
pressed(@exit, 'OK'):-

% save all picTures' position
write_position,
clear draw,
clear(@exit).

%---
% common subroutine used for operate

% cancel a dialog.
pressed(Dialog, 'Cancel'):-

clear(Dialog).

% clear everything before exit
clear-draw:-

clear(@rmaindraw),
clear((pic),
clear((operate),
clear((create),
clear(/fill),
clear(ipen),
clear((ends),
clear((exit),clear((lbit),
clear(11tti).

% Eof DrawGraph

61

APPENDIX D

SOURCE CODE OF MEGRAPH21

% Program MeGraph2l
% Purpose Problem-independent code for 'means-ends tutoring':
% tutoring for learning of sequences modelable by means-ends analysis.
% Version • This is a Prowindows version of Prof Rowe's METUTOR21
% intended to run on Quintus Prolog 3.0. Reorganized and
% augmented for graphics user interface.
% Author Prof. Neil C. Rowe
% Modified by • Francius Suwono
%Date ofmod. : May 1, 1992
% Note
% For an application, you must define:

% (1) recommended(<difference>,<operator>)
% --recommendation conditions
% (2) precondition(<operator>,<factlist>) or
% precondition(<operator>,<conditionlist>,<factlist>) or
% precondition(<operator>,<conditionlist>,<factlist>,<msg>)
% --gives facts required by operator;
% 3-arg form requires additional facts true
% 4-arg. form also prints message when precondition applied
% (3) deletepostconditi on(<operator>,<factlist>) or
% deletepostcondition(<operator>,<conditionli st>,<factlist>)
% del etepostcondition(<operator>,<conditionlist>,<factlist>,<msg>)
% --gives facts deleted by op.;
% 3-arg. form requires additional facts true;
% 4-arg form also prints message when applied
% (4) addpostcondition(<operator>,<factlist>) or
% addpostcondition(<operator>,<conditionlist>,<factlist>)
% addpostcondition(<operator>,<conditionlist>,<factlist>,<msg>)
% --gives facts added by op.;
% 3-arg form requires additional facts true
% 4-arg form also prints message when applied

% Some optional definitions you may include:

% (5) randsubst(<op.>,[<substlist I >,<substlist2>,...])
% -gives random-substitution triples or quadruples, each in the form:
% [<initial-fact>,<ending-fact>,<transition-prob.>,<message to user>
% Note: first and second arguments can be the word 'none';
% fourth argument is optional.
% (6) nopref(<operator I >,<operator2>)
o/•ý --if the order (priority) of two operators in the 'recommended'
% rules was arbitrary, include this fact.
% (7) intro(<text>) --introductory info for student

62

% ~(8) debugflag --if asserted, debugging info printed re means-ends anal.
% (9) studentflag -- if asserted, does not check for teacher errors

% Also: as this tutor works, it asserts "student-error" facts that
% log all student mistakes. To see, type *listing(student~effor)"
% to the top level of Prolog.
% ~To use, there are two entries: "initialize tutor" and ututor(Op)".

dynamic session -num?!, error num/l, student error/6,
topgoal/ I, top..solutrjon/l1, readbuff/ 1, opjlist/i,
mainline states/4, cached/4, cached disaster _op/2, current-statell,
tutor says done/i.

no style che&-(si nil evar), unknown(A~fail), load files(library(random)).

sessi on-num(O).
runtime entry(go).
studentifag.

use_module(l ibrary(interpret messages)).
:usern odule(library(dialog)).
-use-module(library(messages)).

% Creates the main menu and the main display window.
% Main menu window, has three selections:

% Go -continue the tutoring system
% ~Hel p : di spl ay he]lp.
% Exit: return to system

go
main-menu.

main menu-
% open the main-menu dialog only if it is not opened yet
not(object(@main.,menu))>
(new-dialog(@main menu, cais, main_menu),
send(O(main~menu, size, size(200,60)),
send(Omain -menu, open))
% otherwise do nothing
true.

% callbacks for main menu of tutoring system
pick(@main menu, 'Help').

pick(@main menu, 'Exit').
cFear(@main nmenu),
clear-all.

63

pick(@main menu, 'Go..'):-
not(object(@main))->
initializetutor,
creategraph,
run.

% dialog declarations for tutoring system main menu
% dialog declarations for tutoring system main menu
main menu(, label('Main Menu'), , []).
mainmenu(, button('Go..', pick), below, (]).
main menu(_, button('Help', pick), right, []).
main-menu(_, button('Exit', pick), right, [])

% Create main window for the tutoring system

createjraph :-
% load picture position from the file posfile
read position,

% create main plate
new(@ main, picture('Computer Assisted Instructions System')),
send(@main, size, size(930,850)),
send_list(@main, [horizontalscrollbar, verticalscrollbar], off),

% create operator browser
new(@oplist, browser('Computer Assisted Intructions System')),
send(@oplist, size, size(200,850)),

% arrange and display position of menu boxes
send(@oplist, right, @main),
send(@rmain, open),
% create fonts for text
new(@font, font(gallant, bold, 14, 0)),
new(@ font2, font(gallant, bold, 18, 0)),

% create and display intro heading and introduction
displayjintro,

% create and display objectives heading
new(@obj heading, text block('Your objectives:', area(60,82,760,20),
center)),
senl(obj heading, font, efont),
send(@main, display, @obj..heading),

% create and display objectives list
goal(GOAL),
new(.@obj text, string),
showlist(geobj_text, GOAL, state),

64

send(@obj text, append,'.'),
new(gobjective, text -block(@obj text, area(60,1I00,760,SO). center)),
send(@main, display, @iobjective)7,

% create and display current states heading
new(@facts heading. text -block(~The following facts are now true:',
area(60, 192,760,20), center)),
send(@rfacts heading, font, @font),
send(@ dmain, di splay, @facts heading),

% create and display operator box heading
new(@op heading, text block('Select an action:,
area(60,7 10,760,20), center)),
send(@op_ heading, font, @font),
send(@ min, display, @op heading),

% create operator box
new(@ operator _box, box(288,740,300,40)),
send(t@operator box, pen, 2),
send(@ main, display, @operator-box),

% create display bitmap with border
clear(@display),
clear(@eb),
new(@ display, bitmap(926, 380)),
new(@Ib, box(10,298,,910,3 84)),
send((main, draw -in, @b),
send(@(display, position, point(l2, 300)),
send(@ main, display, @display),
% display initial state and operators, run the tutor.
start state(STATE),
di splayfacts(STATE),
retrievejpicture(STATE),
di spi ay~operatorjlist.

% Display intro, intro text is created by the instructor.

display-intro,:

% create and display intro heading
new(@ aintro heading, text bl ock('lntroduction', area(70, 12,760,15), center)),
send(@ "intro heading, font, @font),
send(@ bmain-,display, @intro-heading),

% display intro text
intro(Text),
new(@ intro, text-block(Text, area(70, 15,760,60), center)),
send(@main, display, @intro).

65

% Display instructor's responses.

% display response text
displayinstructor(Text Block)

clear(n instructor),
new(t instructor, text block(Text Block, area(70,790,760,60), center)),
send(@main, display,-instructor).

write instructor(Text)
c le a r(noi),
new(@ i, string),
send(@i, append, Text).

% Menu for operator selection

% browser for operator selection
displayoperatorlist :-

find-operators(OL),
randperm(OL, POL),
down list(POL),
send(ý oplist, append, 'Exit'),
send(@ oplist, selected, cascade(@oplist, operator, 0)),
send(@oplist, clicked, 0).

down Iist([])

down list(POL):-
% process the first member of the list
first(X, POLl, POL),

% process the operator, example form: 'go fire'.
clear(@op),
new(Qop, string),
showlist(@op, [X], op),
sendjlist(@oplist, append, @op),

% build the translation table
% example form translate('go fire', go(fire)).
get(@op, text, Text),
F =.. [translate, Text, X],
uni queassen(F),
down_li st(POL 1)

66

% This is the initialization of the means-ends tutor. It first runs quick error checks
% on the teacher's definitions, then assert some useful global variables, checks to
% verify that the problem given is solvable.

initialize tutor:-
start state(STATE),
goal(GOAL),
not(check.obvious.errors),
issue warnings,
uniqueassert(top_goal(GOAL)),
findoperators(XL),
uniqueassert(opiist(XL)),
write('Wait a moment while I analyze the problem thoroughly.'), ni,
once ..means ends(STATE,GOAL,OPLIST2,GOALSTATE2),
uniqueassert(topsolution(OPLI ST2)),
abolish(mainline_states/4),
retract(sessionnum(NN)),
NNp I is NN+ l,
asserta(sessionnum(NNpI)),
abolish(tutorsays_done/I),
aboli sh(error num/I),
asserta(error num(l)),
uniqueassert(currentrstate(STATE)), .

initializetutor(STATE,GOAL) -
write('The problem you gave me seems impossible.'), nl,!.

% This is a temporary top-level program to call tutorselected repeatedly.

run -

tutor says done(S), .

run :-
send(@oplist, selected, cascade(@oplist, operator, 0)),
send(@oplist, clicked. 0)

% operator selection
operator(@oplist, 'Exit')

clear-all.

operator(@oplist, Text)

% display selection
clear(@op),
new(@op, text block(Text, area(300,740,302,36), center)),
send(Q@main, dcisplay, @op),
translate(Text, Operator),
tutor(Operator).

67

% display the sates

display facts(STATE) -

% diplayfa~cts~
clear(@facts~tx),
new(U~facts text, strn g),
showlist(facts-text, STATE, state),
send(I~facts_text, append,'.'),
new(tefacts, text block(@ facts text, area(70,2 10,760,60), center)),
send(@rnain, display, @facts).

% Subroutines for intialization of the tutor

% creating a list of operators
find_operators(XL):

nice bagof(X, P",precondition(X,P), XL I),
nice bagof(X, CAP ̂ precondi ti on(X,C,P), XL2),
append(XL 1, XL2, XL).

% Problem-definition errors:. errors by the instructor building a particular
% means-ends tutor.

check-obvious errors
not(s-tudentflag),
setof([M,A],obvious-error(M,A),MAL),,
writepai ri ist(M AL)

obvious-error('a fact predicate name is misspelled. ',W2):
member(W ,[recommended,precondi-

tion,del etepostconditi on,addpostconditior-,
randsubst,nopref,i ntro]),
get misspelling(W,W2), (P. .W2,X,Y]; P=..[W2,X,Y,Z], P=. [W2,X,-

call(P),
not(same(W2,xnopref)).

obvious error('precondition fact missing for action ',O)
recommended(D,O),
not(get~preconditi on(O,S,L)).

obvious-effor('deletepostcondition fact missing for action *,O)
recommended(D,O),

68

obvious-error('addpostcondition fact missing for action ',O) i
recominended(DO),
not(get-addpostcondition(O,S,L)).

obvious-error('recommended fact missing for action *,O):
get~precondition(O,S,L),
not(recommended(D,O)).

obvi ous error('recom mended fact missing for action *,O):
get del etepostcondi ti on(O, S,L),
not-(recommended(DO)).

obvi ous-error,"recom mended fact missing for action',O):
get addpostcondition(O,S,L),
not(recornmended(D,O)).

issue_ýwarnings:
not(studentflag),
setof([M,A].possible-error(M,A),MAL), '
write('Wamings:0), nI,
writepairlist(MAL), n].

issue_ýwarnings.

possible error('This fact is not creatableý ,F)
get~precondi tion(O,S,PL),
inember(F,PL), (atom(F), not(F=. .[notU)),
uncreatabl e(F).

possible error(CThis fact is not removable ',F)-
getjprecondition(O,S,PL),
mernber(not(F),PL),
unremovable(F).

% Misspelling confirmation given two bound arguments

fixspell(W1,W2):
atomn(W),
atom(W2),!
name(W I ,AW 1),
fixspe1l2(AW I ,AW2),
name(W2,AW2).

fixspell(WI,W2):
Wl=.,[PIIL],
W2=..[P21L],
not(P I - P2),!
fixspell(PI ,P2).

69

fixspell(WI,W2):-
WI=..[P,QIIL],
W2-. .[P,Q2IL],

fixspell(QI ,Q2).

fixspell(W I,W2):
WI = [P,QR IIL].
W2-..[PQ,R2IL],
not(R I-R2),I

fixspell(RI,R2).

fixspe]12(AW,AW2):
del eteone(X,AW,AW2).

fixspell2(AW,AW2):
deleteone(X,AW2,AW).

fixspe]12(AW,AW2) .
transpose(AW,AW2).

% Computing possible misspellings in the teacher's program

get mnisspelling(W I,W2):
name(W I,AW I),
(deleteone(X,AW I ,NAW I),
deleteone(X.NAW I ,AW 1),
transpose(AW 1 ,NAW 1)),
lettercode(X),
name(W2,NAW 1),
not(same(W I,W2)).

lettercode(X):
niember(X,97,98,99, 100,101,102,103,104,105,106,107,108,
109,110,111,112,113,114,115,116,117,118,119,120,121,122]).

transpose([X,YIL],[Y,XIL]).

transpose([XIL],[XIM]) .

transpose(L.M)

writepairlist([]).

writepairlist([[X,Y] IL])-
write(X), write(Y), ni,
writepairlist(L).

70

% Handling of randomness

% After the postconditions are applied, random substitution (randsubst) definitions are
% applied to the state. These can add facts, delete facts, or change facts The first
% argument to 'randsubst' is the operator involved, and the second argument is a list of
% quadruples. The first argument of each quadruple is the fact being matched, the second
% argument is the fact it should be replaced with, the third is the probability of this
% change, and the optional fourth argument is a message printed at the time this change
% is done. Either of the first two arguments can be 'none' to allow additions and
% deletions.

dorandsubst(O,S,NS)
randsubst(O,RL),!,
dorandsubst2(RL,S.NS)

dorandsubst(O,S,S)

dorandsubst2([], S,S)

dorandsubst2([[F,NF,P]IL],S,NS):-
random(X),
X<P,
changestate(F,NF,S,S2), !,
do-randsubst2(L,S2,NS)

do randsubst2([[F,NFPM]IL],S,NS)
random(X),
X<P,
changestate(F,NF,S,S2), !,
write instructor(M),
do._randsubst2(L,S2,NS),
display instructor(@i).

do randsubst2([CIL],S,NS):-
do-randsubst2(L,S,NS)

changestate(none,NF,S.[NFIS]) -',
not(member(NF,S)),
write instructor('Random change made: fact '),
showvact(@i,NF,state),
send(@i, append,' added.'),
display.instructor(@i), !

changestate(F,none,S,S2) :-!,
member(F,S),
delete(F,S,S2),
write instructor('Random change made: fact '),
showact(@i, NF,state),
send(@i, append,' removed.'),
displayinstructor(@i), !.

71

changestate(F,NF,S,(NFjS3]) :~
rnember(FS),
delete(F,S,S3),
writeinstructo, i, 'Random change made. fact '),
showfact(@i, NFstate),
send(@i, append,' 'added, and fact '),
showfact(i,F,state),
send(@i, append,' 'removed.'),
display instructor(@i),!

randperm(L,[JIPL])
randitem(L,I),
delete(1,L,L2),
randperm(L2,PL).

randitem(L,I):
length(L,N),
Np I is N+I1,
random (l,Np 1 ,K),
item(K,L,J).

% Tutoring rules
% This manages the tutoring and simulation at each student selection.

tutor(Qp).-
current state(S),
top~goal(G),
once means ends(S,G,[TutorOpjTOL],FS), !
tutor72(Qp,S,G,Tutor~p),.

tutor(Qp).-
write -instructor('J cannot solve the problem anymore.'),
displayjinstructor(@i)

tutor2(Op,S,G,Tutor~p).
writedebugg(Tutor~p),
get difference(G,S,D),
handle-student op(Op,Tutor~p,S,DFinalOp),'
talky apply~op(Final~p,S,S2),
dora'ndsubst(FinalOp,S2,NewS),
uniqueassert(current...State(NewS)),
check -mainline return(NewS),
check if done(NewS,G),
di splay-facts(NewS),

72

% retrieve picture here
retrievejpicture(NewS),

tutor2(Op,S,G,TutorOp).

checkif_done(S,G):-
get. difference(G,S,C[),
writeinstructor('Congratulations! You are done'),
asserta(tutor says done(S)),
display instructor(@i), .

check if done(S,G):-!

% retrieve pictures according to state

retrieve_picture(State) -
send(@display, clear),

% make a list of facts in the filenaine form (eg fire is raging).
conven(State, Filenames),
filelist(F),
retrieve(F)

convert([],)

conven([SIS I], Filenames)

% make the filename, example form: 'fire-is location'.
clear(@fn),
new(9,fn, string),
showlist(@fn, [S], statefile),
get(@fn, text, Text),
% put it in the filename list
append(Filenames, [Text], Filenames I),
uniqueassert(filelist(Filenamesl)),

% process next member of the list
convert(S I, Filenames I).

retrieve([]):- !.

% retrieve the new state's pictures
retrieve([FilenamelRest]) :-

display.picture(Filename),
retrieve(Rest)

% retrieve only if the file is there, otherwise just continue.

73

display_picture(Filename) -

% retrieve if bitmap file exists
exist(Filename) ->
(area(Filename, X, Y, W, H),
new(Bitmap, bitmap(W, H)),
send(Bitmap, load, Filename),
send(Bitmap, position, point(X, Y)),
send(@display, draw in, Bitnap))j
true.

% This implements the tutoring strategies for different kinds of student errors. Some
% are straightforward like spelling errors and precondition violations, and cause failure.
% Others require complex analysis with calls to 'means ends' on hypothetical states
% created by the student. Some rules notice that somet'ing is wrong, but let the student
% proceed after a warning because it is probably better teaching strategy in this case to
% let the student find out for themselves the negative consequences of their action
% selection. One rule does not tutor immediately, but sets up a flag in the database that
% the student seems to be pursuing a digression, and tutors when the student returns from
% that digression via the 'checkmainline return' line in 'tutor2'

handlestudent_op(02,O,S,D,NO)
op_list(OL),
not(mrember(02,OL)),
writeinstructor('Not a valid action'),
displayinstructor(@i), !, fail.

% Record your choice and student's choice before checking any more rules.
handlestudentop(02,O,S,D,NO):-

not(same(02,O)),
not(xnopref(02,O)),
session.num(NI),
error num(N2),
top-goal(G),
asserta(studenterror(N) ,N2,02,O,S,G)),
N2pl isN2+l,
retract(errornum(N2)),
asserta(error.num(N2pl)), fail.

% Will student operator not change the state?
handlestudent_op(02,O,S,D,NO):-

useless op(02,S),
get addpostcondition(02,S,[PA)),
get deletepostcondition(02,S,[PD]), !,
write instructor('It is already true that '),
showact(@i, PA,statc),
send(@i, append, '.'),
display instructor(@i).

74

handle-student op(02,O,S,D,O2) -
xuseless op(02,S), !,
write instructor(
'That will not directly affect anything, but let us try it anyway.'),
display-instructor(@i).

% Will student action lead to unsolvability of the problem?
handle-student op(02,O,S,D,NO)

disaster op(02,S), !,
write instructor('You cannot ever succeed if you do that!'),
display instructor(@i), !, fail.

% Is student operator same as tutor operator? Then return.
handle-student op(O,O,S,D,O):- !,

"write instructor('OK!'),
display instructor(@i).

% Or is student operator ranked as appropriate as tutor operator?
handle studentop(02,O,S,D,02) -

xnopref(02,O), !,
writeinstructor('OKI'),
displayinstructor(@i).

% Has the student ignored the tutor's operator 5 times before? Then gripe.
handlestudent_op(02,O,S,D,NO):-

session_num(N l),
bagof(N2,03^S3^AGstudent error(N l,N2,O3,O, S3,G),N2L),
length(N2L,M),
T is M mod 5, T=O,
writeinstructor('Say, why not do the '),
showfact(@i,O,op),
send(@i, append,' action?'),
displayinstructor(@i), fail

% Could student have confused this operator with another? Then warn.
handlestudent op(02,O,S,D,NO):-

confusable(O2,O,S),
write instructor('Warning maybe you confused that with the '),
shovTact(@i,O,op),
send(@i, append, ' action?'),
display instructor(@i), fail.

handle-student op(02,O,S,D,NO):-
xnopref(O,03),
confusable(02,03,S),
desirableop(D,03),
write instructor('Warning maybe you confused that with the '),
showTact(@i,03,op),
send(@i, L. . id,,'action?'),

75

displayinstructor(@i), fail.

% Could student have misread a fact in the state description? Then warn.
handle-student op(02,0,S,D,NO):.

get_precondition(02,S,PO2),
get di fference(P02,S,[P]),
member(P2,S), confusable(P,P2,S),
write instructor('Warning: maybe you confused "'),
showTact(@i, P,state),
send(@i, append,'" with '),
showfact(i,P2,state),
send(@i, append, "?'),
display instructor(@i), fail.

% Does student's operator violate preconditions? Then ask for new one.
handle student op(02,O,S,D,NO):-

getprecondition(02,S,P02),
get difference(P02,S,D2),
not(D2=[]),!,
write_instructor('That action requires that '),
showlist(@i ,D2,precond),
send(@i, append,'.'),
display_instructor(@i), !, fail.

% If student seems to be digressing, make a note for future reference.
handlestudent op(02,O,S,D,02):-

top.goal(G),
applyop(O,S,S3),
applyop(02,S,S2),
compare solutions(S3,G,OL3,GS3,S2,G,OL2,GS2),
subsequence([OIOL3],OL2), '.
applyops([OIOL3],S,SLGS4),
elimdups(SL,ESL),
asserta(mainline states(ESL,02,S,O)),
write instructor('Your action does not seem immediately helpful,
but I will try it.'),
display instructor(@i).

% Grumble if student's operator will never help solve the problem.
handlestudentop(02,O,S,D,02)top_goal(G),

once meansends(S,G,OL,FS),
not(member(02,OL)), !,
write instructor('OK, but I am not sure you need to do that action.'),
display instructor(@i).

% Grumble if student's operator is not the highest-recommended.

76

handle-student op(02,O,S,D,02):
top~goal(G), get difference(G,S,D2),
once means endis(S,D2,-.j,-
desir~able opT(D2,03),
get~precondition(03 ,S,PL),
least-common op(S,G,0,02,PL,GROOT),'
write instructor('OK, but that action will not help achieve these
desirable things: '),
get difference(GROOT, S,D5),
del etc uncreatable(DS,D6),
randperm(D6,D7),
showi ist(@i .D7,precond),
send(@i, append,'.'),
di spiay-instructor(@i).

% Else grumble because you can't understand what student is doing.
handle-student-op(02,O,S,D,02):

write -instructor('Your action is not what I would choose,
but let us try it.'),
display instructor(@i),

% Intermediate predicates used by the tutor

xnopref(O1,02):

xnopref(0l02)2)

nopref(02,O I).

useless~op(O,S):-
apply op(O.S,S),!

xuseless-op(O,S) .
apply op(O,S,S),
not(randsubst(O,_).'

disaster-op(02,S)-
cached disaster op(02,S),.

disaster op(02,S):
apply~op(02,S,S2),
top~goa](G),
not(once-means en ds(S2,G,3),
asserta(cached -disaster-op(02,S)), !

desirable-op(D,O):
recoinmended(D2.0),
subset(D2,D)

77

% This is used when the student has picked an operator which does help solve the problem
% but is not the highest-priority operator (i.e, he has a bug in his internal 'recommend-
% ed' definitions.). It tries to find a goal that the student could be working on that
% explains his choice of the wrong operator, and tries to tailor its explanation to what
% should be done first to achieve that goal

least.common-op(S,G,O,02,G2,G):-
once means ends(S,G2,OL,NS),
least-common op2(O,02,OL).

leastcommon op(S,G,O,"O2,G2,DROOT):-
get difference(G2,S,D),
once means ends(S,D,..,_),
desirable_op(D,03),
get_preconditi on(03, S,G3),
leastcommon op(S,G2,O,02,G3,DROOT),!.

leastcommon op2(O,02,OL) :-
not(member(O,OL)), I

leastcommon op2(O,02,OL):-
not(member(02,OL)),'.

compare solutions(S3,G,OL3,GS3,S2,G,OL2,GS2)
oncemeansends(S3,G,OL3,GS3),
once_means_ends(S2,G,OL2,GS2),!.

% Since the tutor repeatedly reexamines slightly different paths to the goal, a lot of
% redundancy can be avoided by having the tutor store every solution it has found (by
% 'means-ends') to a problem And fact order shouldn't matter in caching states.

cachestates(S,G,[],GS) :- !.
cachestates(S,G,OL,GS) :-

cached(S,G,OL,GS),.
cache_states(S,G,OL,GS) :-

cached(S2,G2,OL2,GS2),
check_permutation(S,S2),
check_permutation(G,G2), !.

cache_states(S,G,[OjOL],GS) :-
asserta(cached(S,GOjOL],GS)),
apply_op(O,S,NS),
cachestates(NS,G,OL,GS),!.

% This takes a list of operators and tells you what the resulting state is after applying
% them to some starting state.

apply -ops([],S,[S],S) :-!
applyops([OIOL],S,[SISL],NS):-

apply.op(O,S,S2),
apply_ops(OL,S2,SL,NS).

78

applyopp(O,S,NS):-
get~precondition(O, S,PCL),
get-di fference(PCL,Sjfl),
get del etepostconditi on(O, S,DP),
deliteitems(DP,S,S2),
get -addpostcondifion(O,S,AP),
union(AP,S2,NS), 1.

tlyapp~lyop(O.S.NS):
get~precondition(O, S,PCL),
get difference(PCL,S, []),
get~deletepostconditi on(Q,S,DP),
del eteiterns(DP,S, S2),
get add postconditi on(O,S, AP),
union(AP,S2,NS),
print optional message_d(O,S),
pnintoptional-messageý_a(O,S), 1

% This checks for -when the student returns from a digression, so as to tutor him at that
% point.

check-mainline re~turn(S):
mainline states(SL,O,OS,BO),
check -mriinline -return2(SSL,OOS,BO).

check-mainline-return(S).

check-mainline -return2(S,[S2ISL].O,OS,BQ):-
permutemember(S,[52]), !,
write -instructor('You are returning to a previous state.'),
di splay instructor(@i).

check-mainline -return2(S,SL,O,OS,BO):
permutemember(S,SL), 1,
write instructor('Do you see now that Your choice of the '),
showfact(@i .O,op),
send(@i, append, ' action in the state with the facts [)
showlist(@0i ,OS,state),
send(@i, append, '] was not the best choice; the '),
showfact(' i,BO op),
append(@i, ' action would have been better.'),
retract(mainline -states(SL,O,OS,BO)),
display instructor(@i).

confusable(O,O,S) :- !, fail.

% Two actions are confusable if they do the opposite things
confusable(Ol102,S):-

get -del etepostconditi on(O I ,S,DL I)
get del etepostcondi tion(02, S,DL2),

79

getaddpostcondition(OI ,SDL2),
getaddpostcondition(02,S,DL I),!.

% Two actions or literals are confusable if their first word is identical
confusable(O 1,02,S) :-

0=..[PIRI], 02=..[PIR2],!.

% Or if they are words whose first two letters are identical,
% or where you can delete first one or two letters to get the other word
confusable(0 I,02,S) -

atom(Of), atom(02).
name(O I,[C I,C21NO I]). name(02,[C3,C4jNO2]),
(same(NO I,NO2),
same(NO I,[C3,C41NO2]),
same(N02,[C I,C21NO I]),
same([C21NO I],[C3,C4jNO2]);
same([C41NO2],[CI,C2jNOI])), !.

% The original means-ends program (used for 'what if reasoning)

% Note that this works little differently from 'means ends tutor' in that it checks for
% infinite loops for several situations that the earlier definition does not. A goal-state
% stack is kept to check new goals and states against. Random substitution via 'randsubst'
% is ignored, so in fact the solution paths found by this program may be quite different
% from those typically encountered in the tutor, and in some pathological cases with
% probabilities of I or 0 the results of this program may be in fact impossible, though
% that is unlikely.
%--

oncemeansends(STATE,GOAL,OPLIST,GOALSTATE):-
meansends(STATE,GOAL,OPLIST,GOALSTATE),
cachestates(STATE,GO.AL,OPLI ST,GOALSTATE), I

means_ends(STATE,GOAL,OPLIST,GOALSTATE) -
meansends2(STATE,GOAL,OPLIST,GOALSTATE,[]),
writedebug7.

meansends2(STATE,GOAL,OPLIST,GOALSTATE, STACK)
cached(STATE2,GOAL2,OPLIST,GOALSTATE),
checkjpermutation(GOAL,GOAL2),
check.permutation(STATE,STATE2),!,
writedebug6(STACK), !.

meansends2(STATE,GOAL,OPLIST,GOALSTATE,STACK):-
member([STATE,GOAL],STACK),!,
writedebug4(STATEGOAL,STACK), fail.

means.ends2(STATE,GOAL,[].STATE,STACK):-
get difference(GOAL,STATE,[]), !.

80

means ends2(STATE)GOAL,OPLIST,GOALSTATE, STACK): -
get difference(GOAL,STATE,D),
des'irable-op(D,OPERATOR),
getjprecondition(OPERATOR.STATE,PRELIST),
all achievable(STATEPRELIST),
wrtedebug I (D,OPERATOR,STACK),

means ends2(STATE,PRELIST,PREO-
PLISTPRESTAlTE[[STATE,GOAL]ISTACKJ),

writedebug2(PRESTATE,D,OPER.ATOR,STACK),
get del etepostcondi ti on(OPERATORPRESTATE,DELETEPOSTLIST),
deletei tems(DELETEPOSTLJST,PRESTATE,PRESTATE2),
get~addpostcondid on(OPERATORPRESTATE,ADDPOSTLIST),
union(ADDPOSTLJ STPRESTATE2,POSTLIST),
means ends2(POSTLIST,GOAL,-

POSTOPLIST,G(5ALSTATE, [[STATE,GOAL]ISTACK]),
writedebug3(GOALSTATE,OPERATORSTACK),
append(PREOPLI STIQPERATORIPOSTOPLI ST],OPLIST)

means-ends2(STATE,GOAL,OPLJ ST,GOALSTATE,STACK) -
wri tedebugS(STATE,GOAL, STACK), !, fail.

% Debugging tools

% These are enabled when the user asserts the no-argument predicate 'debugflag.
% --

writedebugi (D,O,STACK) ý-
not(debugflag),!

wri tedebug I(D.0, STACK) -
length(STACK,NM I),
N is NMI+),
write(C»Action),
write(O),
write(' suggested at level')
write(N),
write('to achieve difference of[)
write(D,state),
write(']'),

!,ni.

wfitedebug2(S,D,O. STACK):
not(debugflag),!.

wfitedebug2(S,D,O,STACK):
length(STACK,NMl1), N is NM I +1,
writeC '»Action '),
wfite(O),
wfite(C appi ied at l evel)

81

write(N),
write('to reduce difference of ['),
showli st(D,state),
write(']'),
write('in state in which '),
writel ist(S,state),
!, nl.

"writedebug3(S,O,STACK):-
not(debugflag), !.

writedebug3(SO,STACK):-
length(STACK,NM I),
NisNMI+1,
write(>>Level '),
write(N),
write(' terminated at state in which),
writelist(S,state),
1, nlI

wri tedebug4(S,G,STACK) - not(debugflag),'.

writedebug4(S,G,STACK) :-
write('>>>>Reasoning avoided an infinite loop at level 0),

length(STACK,NM 1),
N is NM I+ 1,
write(N),
write(' where problem was identical to that at level '),
index([S,G],STACK,.),
write(l),
!, ni.

writedebug5(STATE,GOAL, STACK)
not(debugflag),!.

writedebug5(STATE,GOAL,STACK):-
write(5>>>Unsolvable problem at level '),
length(STACK,NM i),
N is NMW+I,
write(N), nl,
write(' for state '),
writelist(STATE,state),
write(' and goal '),
writelist(GOAL,state),
nh.

writedebug6(STACK):-
not(debugflag), !

writedebug6(STACK) -
write('>>>Previously computed solution used at level '),

82

length(STACK,NM 1), N is NM I +1,
write(N),

n, f

writedebug7:
not(debugflag),.

writedebug7 : - ni,.

writedebug8(OP)
not(debugflag),.

writedebugg(OP):
write('The tutor prefers action')
writefact(OP,op),
!, n].

flag errors :
uniqueassert(debugflag).

unflag:
retract(debugflag).

% Miscellaneous utility functions

all-achievable(S,G) -
get_difference(G,S,D),
not(unacbievable-member(D)).

del ete-uncreatable([flj).

del ete-uncreatable([XIL],M)
uncreatable(X), !,
del etc uncreatable(L,M).

del ete-uncreatable([XIL]I[XIM]) .-
del ete-uncreatable(L,M).

unachievable member(D)
member(F,D),
(atom(F); not(F=..[notlj)),
uncreatable(f), !.

unachievable -menber(D):
niember(not(F),D),
unremovable(F),.

uncreatable(f) :
not(in-addpostcondition(F)), I.

83

unrernovable(f)
not(in~deletepostcondition(F)),

in-deletepostcondation(F) :- !,
any deletepostconditi on(O,L),
member(F,L),.

in-addpostcondition(F) :
any addpostcondition(O,L),
minember(F,L),.

added by randsubst(F) :
randsubst(O,RSL),
rnember(L,FU,RSL),.

del eted by randsubst(F) :
randsubst(O,RSL),
member([FU,RSL), '

any addpostcondition(O,L) -
addpostcondition(O,CLM)

any addpostcondition(O,L) -
addpostcondition(O,C.L)

any addpostcondition(O,L) :-
add postcond iti on(O,L)

any deletepostcondition(0 1L).:-
del etepostcondi ti on(O,C,L,M)

any deletepostcondition(O,L)-.
del etepostcondition(O,C,L).

any deletepostconditi on(O,L)--
del etepostcondition(O,L)

get deletepostcondition(OS.L) ý-
del etepostcondi1ti on(O,C,L,M),
factsubset(C,S), I.

get-deletepostcondition(O,S,L)
del etepostcondition(O,C,L),
factsubset(C,S), 1.

get del etepostcondition(O, S,L)
deletepostcondition(O,L).

get addpostcondition(O,S,L)

84

addpostcondition(O,C,L,m),
factsubset(C,S), !.

get addpostcondition(O,S,L)
addpostcondifion(O,C,L),
factsubset(C,S), !.

get addpostcondition(O,S,L):
addposteondition(O,L)

Iget~precondition(O,S,L):
preconditi on(O,C,L,M),
factsubset(C,S),.

*get..precondition(O,S,L) :
preconditi on(O,C,L),
factsubset(C,S),!

getjprecondi ti on(O, S,L)
precondition(O,L).

pnint optional message_d(O,S)
del etepostcondi tion(O,C,L,M),
factsubset(C,S),
write -instructor(M), 1,
di spi ayjnstructor(@i).

print~optional~message_d(OS) -

print optional-message a(O,S)-
addpostconditi on(O,C,L,M),
factsubset(C,S),
write-instructor(M), I,
display instructor(@,)

print optional_message_a(O,S) .1

% Freeing objects

cle r-ll:-clear(@ main),
cear(@di!splay),

clear((oplist),
clear(t operator box),
clear(@ objective'),

85

clear((obj heading),
clear(M obj text),
clear(' facts_heading),
ciear(op-heading),
clear((intro),
ciear((intro heading),
clear(gfont),
clear(@font2).

% Eof MeGraph2l

86

APPENDIX E

SOURCE CODE OF COM5ION

% Program common
% Purpose :This program is a collection of general procedures used in common by
% DrawGraph and MeGraph2l.
% Author Francius Suwono
% Date April 6, 1992

% dialog and browser for geting filename

b,-lectfilename(Dialog)

% make the dialog
newdial og(Di alog, 'Select Filename', selectname),

% make the browser
clear(@browser),
new(browser, browser('Filename selection')),
send(browser, size, size(250,150)),
send(browser, selected, cascade(@browser, filename, 0)),
send(browser, clicked, 0),

% fill the browser with filenames from facts
find all facts(FL),
fill_browser(@browser, FL),

% arrange the browser position, and open it
send(@browser, above, Dialog),
send(@browser, open),
send(@browser, sort)

% callbacks
filename(Browser, Text) i-

new(Filename, string),
send(Filename, append, Text),
send(@ti, selection, Filename)

% dialog declarations for getting filename
select name(, label('Click or type filename.'), below,[]).
select.name(@ti, textitem('Filename ', ", 0), below, []).
select name(_, button('OK', pressed), below, l).
selectname(_, button('Cancel', pressed), right, [0).

87

% derive filenames from facts, and put it in a browser window

fill browser(Browser, []).

fill browser(Browser, [XIFL I]) i-

% make the filename, example form: 'fire-isjlocation'.
clear(@fn),
new((!fn, string),
showlhst(@fn, [X], statefile),

% put it in the browser list
send list(Browser, append, @fn),

% process next member of the list
fillbrowser(Browser, FL I).

% creating a list of facts
find_all facts(XL):-

nice._bagof(X,O~recommended(X,O),XLI),
nice~bagof(X,O^addpostcondition(O,X), XL2),
nice bagof(X,O^precondition(O,X), XL3),
start state(XL4),
append(XL.I, XL2, X I),
append(XL3, XL4, X2),
append(X1, X2, X3),
flatien(X3, X4),
elimdups(X4, XL)

% write all picture positions into posfile
% --------------------- ---------

write_position
:-

tell(posfile),
write_pos,
told.

write_pos:-
repeat,
((area(Filename, X, Y, W, H),
write('area(),
write(Filename),
write(,,),
write(X),
write(','),
write(Y),
write(','),
write(W),

88

write(','),
write(H),
write(')'),
write("'),
ni,
fail) !).

% clear any object
clear(X) :-

object(X) ->
send(X,destroy) I true.

demolish(X):-
object(X) ->

send(X, demolish) I true.

% read all picture positions from posfile

read_position :-
see(posfile),
processposition,
seen.

process.position
read(Term),
process(Term)

process(end-of file):-!.

process(Term) -
uniqueassert(Term),
processjposition.

% input file existence checking

exist(Filename):-
see(Filename),
nofileerrors,
seen.

% Natural language processing
% These routines are not perfect, but they seem to work well most of the time.
% 'showlist' takes a third argument designating what kind of list it is, since
% these things are output differently depending on whether they are states,
% preconditioned lists, or operators. The output is a text object.

89

showlist(Text, [],R) :-!.

showlist(Text, [X],R):

showfact(Text, X,R).

showlist(Text, [X,Y],R):

showfact(Text, X,R),
send(Text, append,'and '),
showfact(Text, Y,R).

sbowlist(Text, L,R):
showlist2(Text, L, R).

showlist2(Text, [X],R):

showfact(Text, X,R).

showlist2(Text, [XIL],R):
showfact(Text, X, R),
send(Text, append,%',),
showlist2(Text, L,R).

% Prowindows version: output format for states.

showfact(Text, F,state)
atom(F),
send(Text, append, 'it is),
send(Text, append, F),

showfact(Text, not(F),state)
atom(F),

send(Text. append, 'it is not)
send(Text, append, F),

sbowfact(Text, not(F),state)
F=. .[P,X],
atom(X),

send(Text, append, X),
is form(X,IX),
send(Text, append,
send(Text, append. IX),
send(Text, append.

90

send(Text, append, 'not '),
send(Text, append, P),

showfact(Text, not(F),state)

send(Text, append, X),
is -form(X,JX),
send(Text, append,6)
send(Text, append, IX),
send(Text, append,' not '),
send(Text. append, P).

showfact(Text, not(F),state):
F=..[status,X,Y],

send(Text, tppend, 'the '),
send(Text, append, X),
send(Text, append, ' status)
is -form(Y,IY),
send(Text, append,
send(Text, append, JY),
send(Text, append, ' not'),
send(Text, append, Y),

showfact(Text, not(F),state)
F=. [P,X,Y],

send(Text, append, X),
send(Text, append, '')
send(Text, append, Y),
is -form(Y,IY),
send(Text, append,'
send(Text, append, JY),
send(Text, append, ' not '),
send(Text, append, P),

showfact(Text, F,state)
F=..[PX], atom(X),

send(Text, append, X),
is -form(X,IX),
send(Text, append,'
send(Text, append, IX),
send(Text, append, '')
send(Text, append, P),

91

sbowfact(Text, F,state)
F=.. [P,X],

sbowfact(Text, X,state),
is-fbrm(X,IX),
send(Text, append,'
send(Text, append, IX),
send(Text, append, ")
send(Text, append, P),

showfact(Text, F~state)
F=.. [status,X,Y],

send(Text, append, 'the '),
send(Text, append, X),
send(Text, append, ' status '),
is -form(Y, IY),
send(Text, append,')
send(Text, append, JY),
send(Text, append, '')
send(Text, append, Y),

showfact(Text, F,state)
F=..[P,X,Y],

send(Text, append, X),
send(Text, append, '')
send(Text, append, Y),
is -form(YJY),
send(Text, append,'
send(Text, append, JY),
send(Text, append,''),
send(Text, append, P),

% --- --- -- --- -- --- -- --

% Filename from facts

showfact(Text, F,statefi Ic):
atom(F),
send(Text, append, 'it-is-'),
send(Text, append, F),

showfact(Text, not(F),statefile)
atom(F),

92

send(Text, append, 'it is not-'),
send(Text, append, F),

showfact(Text, not(F),statefile)
F-..[PX],
atom(X),

send(Text, append, X).
is -form(XJlX),
send(Text, append,'-'),
send(Text, append, IX),
send(Text, append, '-not-'),
send(Text, append, P),

showfact(Text, not(F),statefile)
F=. .[P,X],

send(Text, append, X),
is -forrn(X,IX),
send(Text, append,'_'),
send(Text, append, IX),
send(Text, append, '_not_'),
send(Text. append, P),

showfact(Text, not(F),statefile)
F=. .[status,X,Y],

send(Text, append, 'the_'),
send(Text, append, X),
send(Text, append, '_status_'),
is -form(Y,IY),
send(Text, append,'-'),
send(Text, append, JY),
send(Text, append, '_not_'),

showfact(Text, not(F),statef'ile):
F=.. [P,X,Y],

send(Text, append, X),
send(Text, append,'-'),
send(Text, append, Y),
i s -form(Y,IY),
send(Text, append,'_'),
send(Text, append, JY),
send(Text, append, '_not_'),
send(Text, append, P),

93

showfact(Text, F, statef ilIe)
F-.. [P,X],
atom(X),

send(Text, append, X),
i s form(X,IX),
send(Text, append,')
send(Text, append, I)
send(Text, append,')
send(Text, append,P)

showfact(Text, F,statefile):
F=..[P,X],

showfact(Text, X,statefile),
is -form(X,IX),
send(Text, append,')
send(Text, append, I)
send(Text, append,')
send(Text. append,P)

showfact(Text, F,statefile)
F=. .Jstatus,X,Y),

send(Text, append, 'the_)
send(Text, append, X),
send(Text, append, '_status-'),
is -form(YIY),
send(Text, append,'-'),
send(Text, append, JY),
send(Text, append,'-'),
send(Text, append, Y),

sbowfact(Text, F,statefile)
F=..[P,X,Y],

send(Text, append, X).
send(Text, append,'_'),
send(Text, append, Y),
is -form(Y,IY),
senid(Text, append,'_'),
send(Text, append, IY),

94

send(Text, append,'_'),
send(Text, append, P),

% Prowindows version: output for preconditions

showfact(Text, F,precond)
atom(F),
send(Text, append, 'it must be'),
send(Text, append, F),

showfact(Text, not(F),precond)
atom(F),

send(Text, append, 'it must not be '),
send(Text, append, F),

showfact(Text, not(F),precond):
F=. [P,X],

showfact(Text, X,state),
send(Text, append,' must not be '),
send(Text, append, P),

showfact(Text, not(F),precond)
F=..[P,X,Y],

send(Text, append, X),
send(Text, append,")
send(Text, append, Y),
send(Text, append,' must not be '),
send(Text, append, P),

showfact(Text, F,precond)
F=..[P,X], atom(X),

send(Text, append, X),
sendkText, append, ' must be '),
send(Text, append, P),

sbowfact(Text, F,precond):
F=..[P,X],

sbowfact(Text, X,state),

95

send(Text, append,' must be
send(Text, append, P),
I.

showfact(Text, F,precond)
F-..[P,X,Y],
send(Text, append, X),
send(Text, append, "),
send(Text, append, Y),
send(Text, append,' must be '),
send(Text, append, P),
I.

% Prowindows version: output format for operators

showfact(Text, F, op):-
F =.. [P, AJ,
send(Text, append, P),
send(Text, append, "),
send(Text, append, A),

showfact(Text, F, op)
F =.. [P, A, B],
send(Text, append, P),
send(Text, append, "),
send(Text, append, A),
send(Text, append, "),
send(Text, append, B),

showfact(Text, F, op)
send(Text, append, F),

showfact(Text. F, op):-
send(Text, append, F).

%.-------- ----------

% Prowindows version: output format for filename

showfact(Text, F, fn) -
F =.. [P, A],
send(Text, append, P),
send(Text, append, '),
send(Text, append, A),

96

showfact(Text, F, fn)
F-M.. (P, A, B],
send(Text, append, P),
.send(Text, append,)
send(Text, append,A)
send(Text, append,'_'),
send(Text, append, B).

showfact(Text, F, fn)
append(Text, F),

showfact(Text, F, fn)
send(Text, append, F).

% A simple heuristic is used for pluralsý the thing before the 'is'
% is plural if it ends ine.s
is_form(X,'is'):

not(atom(X)),

name(X,NX),
last(NX, 115),

% List utilities

% delete one item from a list
del eteone(X, [X IL],L).

del eteone(X,[YfLJ,[Y(M])
del eteone(X,L,M).

% get the difference
get differenceff], S,[]).

get difference([not(P)jG],S,G2)
not(singlemember(P,S)),,
getdifFerence(G,S,G2).

get~difference([PjG],S,G2) :
singlemember(P,S),!
get~difference(G,S,G2).

97

get difference([P IG],S,[PIG2])
get-di fference(G,S,G2).

% test for a subset of a list
subset([],L).

subset([XIL],L2)
singlemember(X,L2),
subset(L,L2).

% test for fact- subset
factsubset([],L).

factsubset([not(P)IL],L2)
not(singlemember(P,L2)),!
factsubset(LL2).

factsubset([not(P)IL],L2) - ,fail.

factsubset([PIL],L2)-.
singlemember(P,L2),
factsubset(L.L2).

% test for member of a list
member(X,L):

append(L I [XIL2],L).

% test for a single member.
singlemember(X,[XIL]) --1

singlemember(X,[YIL]):
singlemember(X,L).

% unions two lists
union([],L,L).

un, on([XIL I],L2,L3):
singlemember(X,L2),!
union(L I ,L21.L3).

union([XIL I],L2,[XIL3]) :
union(L I ,L2,L3).

% delete same items from a list.
deleteitems([],L,L).

del eteitemns([XIL],L2,L3)

98

del ete(X,L2,L4),
del etei terns(L,L4,L3).

% delete an item from a list
delete(X,[],[]).

delete(X,(XIL],M) :-!1.
delete(XL,M).

del ete(X,[YIL],[YIM]) :
delete(XL,M).

% test for an item
item(K,[]I) :- !, fail.

item(K,[XIL],X):-
K=<l1,.

item(K,[XIL],Y) .
KM I is K-1,
item(KM I,L,Y)

% check permutation
check~permutation(L,M)

subset(L,M).
subset(M,L),

% check for subsequence
subsequence([],L) :- 1.

subsequence([XIL],JXIM]) .'

subsequence(L,M).

subsequence(L,[XIM]) -.
subsequence(L,M).

% permute member of a list
permutemember(X,[XIL]) :-!.

permutemember(X,[YIL]):
subset(X,Y),
subset(Y,X),.

perniutemember(X,[YJL]):
permutemember(X,L).

99

% last item of a list
last([X],X).

last([XIL],Y):
last(L,Y).

% first item and tail of a list
first(X, Tail, L) :

append([X, Tail, L).

% eliminate duplicate items from a list
elimdups([],[l).

elimdups([XIL],M):
singlemember(X,L),!
elimdups(L,M).

elimdups([XIL],[XIM]):
elimdups(L,M).

% unique assert of fact.
uniqueassert(Q) :

retract(Q), !
asserta(Q).

uniqueasseri(Q) -
assei-ta(Q).

% unique assert of picture position facts.
uniqueassert area(P) :

F=.. [area, F, X, Y, W, H)i,
retractallI(area(F,_,,,J),

asserta(P).

uniqueassert -area(P)
asserta(P).

index(X,[YIL],N) :-index(X,LNm 1), N is Nm I+1.

same(XX).

nice bagof(X,P,L) :-bagof(X,P,L),.

nice-bagof(XP,[]).

% to take out members of list

flatien([Head I Tail],FL):

100

flatten(Head, Flatl-ead),
flatten(Tail, FlatTail),
append(Flatl-ead, FiatTail, FL).

flatten(E], IR)

flatten(X [X]).

% min function
mi n(X, Y, Z):

Z is YIZisX.

% not predicate
not(X) :- \+ X

% Eof common.

101

APPENDIX F

TEACHER'S DEFITIONS FOR THE FIRE FIGHTING TUTOR [ROWE 90)

% Program merire
% Purpose This program is created for tutoring fire fighting aboard ships
% Author .Prof Neil C. Rowe
% Date .October 1989
% Source .Naval Postgraduate School, Report NPSS2-90-003, Means-Ejid

% Tutoring, Multi-Tutoring and Me ia-Tutoring, by Neil C. Rowe,
% p. 9, February 1990

intro('You are the fire team leader on a U.S. Navy ship. A fire has been reported.').

recommended([treated(casualty)], di rect(medi cal, corpman)).
recommended([treated(casualty)], give(fi rst, aid)).
recommended([not(present(casualty))], remove(casualty)).
recommended([not(unrepl aced(casualty))], replace(casualty)).
recommended([equipped(team)], equip).
recommended([deenergized(fire, area)], deenergize).
recommended([set(boundaries)], set(boundanies)).
recommended([confronted(fire)J, approach(fire)).
recommended([out(fire)], extinguish).
recommended([watched(reflashing)], set(reflash, watch)).
recommended([ven fi ed(out(fire))], verify(out)).
recom mended ([safe(gases)], test(gases)).
recommend ed([tested(oxygen, tester)], test(oxygen, tester)).
recommended([safe(oxygen)], test(oxygen))
recommended([not(smokey)], desmoke).
recommended((esti mated(water)], estimate(water)).
recommended([not(watery)], dewater).
recommended([not(equipped(team))], store(equipment)).
recommended([debriefed(team)], debrief).
recommended([not(watched(reflashing))J, secure(reflash, watch)).
recommended([I ocation(fi re)], go(fire)).
recommended([l ocation(repai r, locker)], go(repair, locker)).
recommended([safe(X)], wait).

precondition(remove(casualty), present(casualty), treated(casualty),
not(dead(casualty))]).

preconditi on(di rect(medi cal, corpman), [present(casualty),
present(medi cal, corpman), not(dead(casualty))]).

precondition(give(first, aid), [present(casualty), not(present(medical, corpman)),
not(dead(casualty))]).

precondition(replace(casualty), [unreplaced(casualty), not(present(casualty))]).
precondition(equip, [location(repair, locker), not(equipped(team))]).
precondition(deenergize, (location(fire)]).

102

precondition(set(boundaries), [I ocation(fi re), not(set(boundari es))]).
precondition(approacb(fire), [location(fire), not(confronted(fire)), raging(fire),

set(boundaries), equipped(team)]).
precondition(exti ngui sh, [location(fz re), raging(fire), equipped(team),

deenergi zed(fire, area), set(boundaries), confronted(fire),
not(dead(casualty)))).

precondition(set(refl ash, watch), [location(fire), not(watched(refl ashing)),
verified(out(fire)), safe(gases), safe(oxygen)]).

precondition(verify(out), [locati on(fire), out(fire)]).
preconditi on(test(gases), (I ocati on(fire), out(fire), equipped(tearn)]).
precondition~test(oxygen, tester), [equipped(team)]).

precnditon~tst~oygen), [location(fi re), out(fire), tested(oxygen, tester)]).
precondition(desmoke, (location(fire), out(fire), smokey]).
preconditi on(esti mate(water), [I ocati on(fire), watery]).
preconditi on(dewater, [location(fire), watery, eSti mated(water)J).
precondition(store(equi pment), [locati on(repai r, locker), equl pped(tearn)]).
precondition(debri ef, [I ocati on(repai r, locker), not(equipped~team)),

watcbed(reflashi ng)]).
precondition(secure(reflash, watch), [watch ed(refl ashi ng), debriefed(team)]).
precondition(go(fire), [I ocation(repai r, locker), not(dead(casualty))]).
precondition(go(repai r, locker), [locati on(fire), not(dead(casualty))]).
precondition(wait, []).

del etepostcondition(remove(casualty), [present(casualty), treated(casualty)]).
del etepostcondition(di rect(medi cal, corpman), f)
del etepostcondition(give(fi rst, aid), []).
del etepostconditi on(repl ace(casual ty), [unrepi aced(casualty)]).
del etepostcondition(equi p, []).
deletepostcondi tion(deenergize, [energized, not(smokey), tested(.gases),

tested(oxygen), debri efed(team), verifi ed(out(fi re))]).
del etepostcond Ition(set(boundari es), [tested(gases), tested(oxygen), debriefed(teani),

verifi ed(out(fi re)), confronted(fi re)]).
"e-letepostcondition(approach(fire), [tested(gases), tested(oxygen), debriefed(teani),

verified(out(fire))]).
del etepostcondition(extingui sh, [raging(fire), tested(gases), tested(oxygen),

verified(out(fi re)), watcbed(reflashing), debri efed(teani), set(boundanies),
safe(gases), safe(oxygen), unsafe(gases), unsafe(oxygen), confronted(fire)]).

del etepostcondition(set(refl ash, watch), [)
del etepostcondi tion(veri fy(out), [)).
del etepostcondi tion(test(gases). [unsafe(gases), safe(gases)]).
del etepostconditi on(test(oxygen, tester), []).
del etepostcondition(test(oxygen), [unsafe(oxygen), safe(oxygen)]).
del etepostconditi on(desmoke, [smokey, debriefed(team), unsafe(gases), tested(gases),

unsafe(oxygen), tested(oxygen)]).
del etepostcondition(esti mate(water), []).
del etepostcondition(dewater, [watery, estimated(water), debriefed(team), tested(gases),

unsafe(gases), tested(oxygen), unsafe(oxygen)]).
del etepostcondi tion(store(equi pment), [equipped(team)]).
del etepostcondi tion(debri ef, []).
del etepostcondi tion(secure(refl ash, watch), [watched(reflashing)]).
del etepostcondition(go(fi re), [locati on(repair, locker)]).

103

del etepostcondi ti on(go(repai r, locker), [I ocation(fire), confronted(fi re), tested(gases),
tested(oxygen)]).

del etepostcondi tion(wait, [tested(gases). tested(oxygen), unsafe(gases),
unsafe(oxygen)]).

addpostconditi on(remove(casualty), [unrepi aced(casuakty)]).
addpostconditi on(di rect(medi cal, corpman), [treated(casualty)]).
addpostconditi on(give(fi rst, aid), [treated(casualty)]).
addpostconditi on(replace(casualty), [J).
addpostconditi on(equip, [equi pped(team)]).
addpostconditi on(deenergize, [deenergized(fire, area), smokey]).
addpostcondition(set(boundaries), [set(boundaries), smokey]).
addpostcondition(approach(fire), [confronted(fire), smokey]).
addpostcondition(extinguish, [out(fire), watery, smokey]).
addpostcondition(set(reflash, watch), [watched(reflashing)]).
addpostcondition(venify(out), [venified(out(fire))]).
addpostcondition(test(gases), [tested(gases), safe(gases)]).
addpostcondition(test(oxygen, tester), [tested(oxygen, tester)]).
addpostcondition(test(oxygen), [tested(oxygen), safe(oxygen)]).
addpostcondition(desmoke, []).
addpostcondition(esti mate(water), [esti mated(water)]).
addpostconditi on(dewater, []).
addpostcondition(store(equipment.[),
addpostcondition(debrief. [debriefed(team)]).
add postconditi on(secure(refl ash, watch), []).
addpostconditi on(go(f ire), [location(fire)]).
addpostcondition(go(repair, locker), [location(repair, locker)]).
addpostcondition(wait, []).

randsubst(equip, [[none, present(medi cal, corpman), 0.5]]).
randsubst(approach(fire), [[nione, present(casualty), 0. 15, 'A team member got burned.']]).
randsubst(extinguish, Iiout(fire), raging(tire), 0.3, 'Fire is still raging.'],

[none, present(casualty), 0. 15, 'A team member got burned.']]).
randsubst(verify(out), [[out(fire), raging(fire), 0.2, 'Unfortunately the fire has flared

up again.']]).
randsubst(test(gases), [[safe(gases), unsafe(gases), 0.2, 'The gases are unsafe.']]).
rand subst(test(oxygen), [[safe(oxygen), unsafe(oxygen), 0.2,'The oxygen is unsafe.']]).
randsubst(desmoke, [out(fire), raging(fire), 0. 1, 'The fire flared up again.'],

[none, present(casualty), 0.1],'A team member is injured.']]).
randsubst(estimat -.water), [out(fire), raging(fire), 0.05, 'The fire flared up again.'],

[none, pres:nt(casualty), 0.1, 'A team member is injured.']]).
randsubst(dewater, [[out(fire), raging(fire), 0. 1, 'The fire flared up again.'],

[none, present(casualty), 0.1, 'A team member is injured.']]).
randsubst(store(equi pment), [[out(fire), raging(fire), 0.05,'The fire flared up again.']]).
rand subst(debri ef, [[out(fire), raging(fire), 0.05,7'he fire flared up again.']]).

del etepostcondi tion(deenergize, [not(equipped(team))], [tested(gases), tested(oxygen),
verifi ed(out(fire))]).

deletepostcondition(debrief, [location(fire)], 0J).

addpostcondition(deenergize, [not(equipped(team))], [present(casualty)]).

104

addpostconditi on(approach(fire), [not(equipped(team))], [present(casualty), smokey]).
addpostconditi on(test(gases), [ragi ng(fi re)], [tested(gases), unsafe~gases)]).
addpostcondition(test(oxygen), [raging(fire)], [tested(oxygen), unsafe~oxygen)]).

addpostcondition(O, [present(casualty)], [dead(casualty)IAPLJ, 'Your casualty died!')
singlemember(O, [go(repair, locker), go(fire), equip, deenergize,
set(boundaries), approach(fi re), extinguish, desmoke, estirnate(water),
dewater, test(gases), test(oxygen, tester), test(oxygen), set(reflash, watch),
store(equipment), debrief, secure(reflash, watch)]),
addpostcondition(O, APL).

nopref(set(boundaries), deenergize).
nopref(test(oxygen, tester), test(gases)).
nopref(desmoke, dewater).
nopref(desmoke, estimate(water)).

start state((location(repair, locker), raging(fire), smokey]).
goal([verifted(out(fire)), safe(gases), safe~oxygen), not(equi pped(teani)), not(smokey),

not(watery), not(watched(refl ashi ng)), not(present(casualty)),
not(unreplaced(casualty)), not(dead(casualty)), debriefed(teani)])

1* Version of "go" for versions 20 and below of the tutor1
go2 :- start_state(S), goal(G), tutor(S, G).

105

REFERENCES

[BOWE 91] Bowen,Kenneth A., Prolog andExpert Systems, McGraw-Hill, Inc., 1991

[ROWE 88] Rowe, Neil C., Artificial Intelligence through Prolog, Prentice-Hall, Inc.
1988

[TURB 90] Turban, Efraim, Decision Support and Expert Systems: Management
Support Systems, Macmillan Publishing Company, 1990

[SMIT 91] Smith, David N., Concept of Object Oriented Programming, McGraw-Hill,
Inc., 1991

[BRAT 91] Bratko, Ivan, PROLOG, Programming for Artificial Intelligence, Addison-
Wesley Publishing Co., 1991

[HEND 88] Hendler, James A., Expert Systems: The User Interface, Ablex Publishing
Corporation, 1988

[WALK 87] Walker, Adrian I., Knowledge Systems and Prolog, Addison-Wesley
Publishing Company, Inc., 1987.

[BOOT 89] Booth, Paul A., An Introduction to Human-Computer Interaction, Lawrence
Erlbaum Associates, 1989

[CARR 87] Carrol, John M., Interfacing Thought, The MIT Press, 1987

[SHNE 87] Shneiderman, Ben, Designing the User Interface, Addison-Wesley
Publishing Company, 1987

[KLAH 86] Klahr, Philip and Donald A. Waterman, Expert Systems Techniques, Tools
andApplications, Addison-Wesley Publishing Company, 1986

[CLANC 87] Clancey, William J., Knowledge-Based Tutoring: The GUIDON Program,
The MIT Press, 1987

[BROW 89] Brown, David C. and B. Chandrasekaran, Design Problem Solving:
Knowledge Structures and Control Strategies, Pitman Publishing, 1989

[GUID 89] Guida, Giovanni and Carlo Tasso, Topics in Expert System Design:
Methodologies and Tools, Elsevier Science Publishers B. V., 1989

[COVI 88] Covington, Michael A., Donald Nute and Andre Vellino, Prolog
Programming in Depth, Scott, Foresman and Company, 1988

[WALK 90] Walker, Terry C. and Richard K. Miller, CMfgE, CEM, Expert Systems
Handbook, The Fairmont Press Inc., 1990

106

[BROW 1 89]Brown, Judith R. and Steve Cunningham, Programming the User Interface,
John Willey & Sons, Inc., 1989

[BAIL 82] Bailey, Robert W., Human Performance Engineering: A Guide for System
Designers, Prentice-Hall, Inc, 1982

[MORA 81] Moran, T P. , The Command Language Grammar: A representation for the
user inerface of interactive computer systems, International Journal ofMan-
Machine Studies, 15, 3-50, 1981

[MCMIL 85] McMillan, T C. and D. A. Moran, Command Line Structure and Dinamic
Processing of Abbreviations in Dialog Management, Interfaces in
Computing, 3, 1985

[QUIN 90] Quintus Computer Systems, Inc., Quintus Prolog Reference Manual, 1990

[QUIN 88] Quintus Computer System, Inc., Quintus ProWINDOWS User V Guide, 1988

[KEAR 87] Kearsley, G. P., Artificial Intelligence & Instruction, Addison-Wesley, 198

[ROWE 90] Rowe, Neil C.. "Means-Ends Tutoring, Multi-Tutoring and Meta-Tutoring",
Naval Postgraduate School, Report NPS52-90-003, p. 9, February 1990

[PSOT 88] Psotka, Josesph, L. Dan Massey and Sharon A. Mutter, Intelligent Tutoring
Sy.•i'ms. Lesson Learned, Lawrence Erlbraum Associates Publishers, 1988

[SLEE 82] Sleeman, D. and Brown, J. S., Intelligent Tutoroing Systems, Academic
Press, 1982

[CAMP 88] Campbell, D. S., "An Intelligent Computer-Assisted Instruction System for
Cardiopulmonary Resuscitation", M.S. thesis, Department of Computer
Science, U. S. Naval Postgraduate School, Monterey CA, June 1988

[KIM 88] Kim, T. W., "A Computer-Aided Instruction Program for Teaching the
TOP20-MM Facility on the DDNI", M.S. thesis, U. S. Naval Postgraduate
School, Monterey CA, June 1988

[SALG 89] Salgado-Zapata, P. J., "An Intelligent Computer-Assisted Instruction System
for Underway Replenihsment", M.S. thesis, U. S. Naval Postgraduate
School, Monterey CA, June 1989

[WEIN 88] Weingart, S. G., "Development of a Shipboard Damage Control Fire Team
Leader Intelligent Computer-Aided Instructional Tutoring System", M.S.
thesis, Department of Computer Science, U. S. Naval Postgraduate School,
Monterey CA, June 1988

107

[KANG 90] Kang, Moung-Hung, "Pilot emergency Tutoring System for F-4 Aircraft
Fuel System Malfunction Using Means-Ends Analysis", M.S. thesis,
Department of Computer Science, U. S. Naval Postgraduate School,
Monterey CA, June 1990

108

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexanderia, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Neil C.Rowe
Code CSRp
Assistant Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Timothy J. Shimeall
Code CSSm
Assistant Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Kepala StafUmum ABRI
Mabes ABRI, Cilangkap,
Jakarta Timur, 13870,
Indonesia

6. Sekjen Dephankam
Departemen Pertahanan Keamanan
JI. Merdeka Barat No. 13-14, Jakarta
Indonesia

7. Depers KASAU
Mabes TNI-AU,
JI. Gatot Subroto No. 72,
Jakarta Timur,
Indonesia

8. Diraeroau
Mabes TNI-AU,
J1. Gatot Subroto No. 72,
Jakarta Timur,
Indonesia

9. Office of Defense Attache
Embassy of the Republic of Indonesia
2020 Massachusetts Avenue, N.W.
Washington, D.C., 20036

109

10. LTC Francius Suwono 2
1. Sengkuni 2, Dirgantara 3,

Halim Pk, Jakarta Timur 13610
Indonesia

110

